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Abstract

We study organizational design in a team-theoretic setting where both coordination
and adaptation are important. Managers, through training and hiring practices, can
control the degree to which signals received by agents are correlated, which we refer to
as shared understanding. We show that fostering a shared understanding can be ben-
eficial when both adaptation and coordination are important, signals are sufficiently
good, and information acquisition is costly. However, shared understanding reduces
the value of acquiring information and communicating. As a result, a self-interested
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1 Introduction

Managers are often tasked with forming and training teams who must subsequently
coordinate their actions and respond to changing circumstances. By laying out rules,
it is easy to induce teams to coordinate actions — “everyone do A no matter what”,
and sometimes possible to cover all contingencies — “you do A no matter what, and
T'll do B no matter what”, but to encourage both coordination and adaptation team
members must be allowed some level of discretion. Managers in such cases often have
little direct control over the behavior of the team but do have the ability to influence
outcomes through its ex ante training strategies and hiring decisions. In this article,
we analyze one such strategy: inducing a correlation in the signals that agents receive,
which we term developing a shared understanding.

Shared understanding, for us, represents the degree to which team members obtain
similar information and interpret these facts in a similar manner. Consider, for exam-
ple, a team of two police officers arriving separately to a crime. Each officer receives
reports over the radio about the situation and must quickly decide on which of two
potential exits to cover. The best outcome is for them both to cover the exit that the
criminal uses to escape. Covering both exits is surely worse if the perpetrator may be
dangerous, but whether coordinating on the wrong exit is better or worse than dividing
their forces depends on the exact structure of payoffs. If, for example, one officer is
sufficient to make a safe arrest, covering both exits is probably better, but if dividing
would mean that the corresponding officer may be shot, sticking together at the wrong
exit would be far better.

Through training and selection, police officers may be trained to anticipate the
same criminal response to a given situation and may interpret the information sent by
dispatch through the same analytic lens. Such training helps the team to coordinate
their actions, which in some cases leads to better outcomes. The goal of this paper is
to understand why and when a shared understanding of the world is valuable, how it
interacts with other information strategies, and how an organization might use shared
understandings as part of an overall information sharing strategy.

We consider a team organizational design problem with two agents who must make
binary actions (A or B) and where the optimal action depends on the state. Individuals
share a common prior that favors action A. They also receive a private signal about
the state of the world. Individuals in the team may have correlated signals, which
correspond to the team having a shared understanding.

Team members share identical payoff functions, which depend both on whether
the correct action is taken by at least one team member and whether both parties
coordinate on the same decision. While coordinating on the correct state is always

optimal, we study cases where coordination is more important than having at least one



person choosing the correct state and cases where the reverse is true. We also study the
case where coordinating on the wrong state is extremely costly and where the teams
payoff function is sub-additive in the number of individuals selecting the correct state,
i.e., getting the first person to choose the right state is more important than getting
the second person to match the state.

As in the example above, we begin by studying environments with exogenous signal
quality and no ex-interim communication. We show that shared understanding matters
only in cases where neither goal dominates so that rules like “everyone do A no matter
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what” or “you do A no matter what, and I'll do B no matter what” are not attractive.
We refer to this as the “responsive range”, where the efficient strategy is for the team
members to respond to their signals. But even in the responsive range, shared under-
standing is not always valuable. Shared understandings are useful only when payoffs
are super-additive in the sense that getting the second person to align their actions
with the first person is more valuable than getting the first person to choose the cor-
rect state, but not so super-additive that coordination is a dominant goal and the team
adopts a ruleE In this intermediate case, a shared understanding helps to coordinate
the actions of the team while still allowing them to adapt to their own information.
In the sub-additive case, in contrast, a shared understanding is detrimental because it
increases the likelihood that both individuals are wrong.

We also show that the relationship between signal quality and the value of shared
understanding has both an extensive and intensive margin. As signal quality improves,
non-discretionary rules become less attractive, and the size of the responsive range
grows. Thus, along the extensive margin, shared understandings matter for a wider
range of parameter values as signal quality improves. That said, the marginal impact
of shared understanding on the team’s payoff is smaller for higher quality signals. This
is obvious in the extreme, since if both teammates get perfect signals of the state, the
level of shared understanding is immaterial.

An organization’s incentives to encourage or discourage shared understandings
within its teams depend on the relative importance of its twin goals of coordination
and adaptation. When one of the goals dominates, rules are optimal, and there is no
reason to invest in encouraging or avoiding shared understandings. Thus, managers
of rule-dominated firms should be agnostic to shared understanding. In cases where
coordination is a more important component of success, but adaptation remains im-
portant, organizations must cultivate a shared understanding amongst team members
to ensure success. This insight helps to explain why drilling and norm formation are

important parts of the training process in organizations such as the military or sports

! As discussed below, our cutoff condition coincides with one found by [Prat| (2002) that shared information
structures are optimal when payoffs are supermodular. This result generalizes an earlier result by |Crémer
(1993) that shared knowledge is valuable in cases where complements matter.



teams where doing it wrong together is better than some people doing it right. Finally,
in cases where adaptation is more important than coordination, firms should minimize
shared understanding by hiring for diversity and attempting to avoid normalizationﬂ

Our baseline model assumes that parties make decisions without team deliberation
and that the quality of information is exogenous. These assumptions make sense in
settings such as our police example, where team members are asked to respond quickly
to an event and where information is being relayed from another part of the organiza-
tion, but they do not capture all environments where shared understandings are likely
to matter. In part 2 of our paper, we extend our model to explore how shared un-
derstandings interact with more traditional information strategies, which we broadly
lump into information sharing and information acquisition.

In our extended model, we study the interaction between shared understanding
and information sharing by introducing costly meetings, where team members reveal
their signals ex-interim. In the super-additive domain, meetings add value by ensuring
coordination; in the sub-additive case, meetings add value by ensuring that the initially
more likely state is always covered. Meeting and shared understandings are always
substitutes, in the sense that the team’s willingness to pay for meetings decreases in
the level of shared understanding. This can be seen in the extreme case where signals
are perfectly correlated and meetings collapse into echo chambers where everyone shares
the same opinion.

We also study how shared understanding interacts with information acquisition by
allowing team members to invest in information. When a team chooses not to hold
a meeting, information acquisition is decreasing in shared understanding (i.e., they
are substitutes). This is because team members have an incentive to acquire better
information to coordinate with other members of the team, and a shared understanding
reduces the likelihood of coordination failures. However, if a team chooses to schedule
a meeting, information acquisition increases with shared understanding. In this case,
coordination always occurs, and shared understanding increases the chance that a
poorly informed team will coordinate on the wrong state.

Finally, we use the insights from our model to explore how managers might select the
level of shared understanding for a team that they have no other way of influencing.
We begin by showing that the team’s surplus is increasing in shared understanding
without a meeting and decreasing in share understanding with a meeting. As such,

when a manager has preferences aligned with the group, he will select groups based

2The recent book “Hidden Figures: The American Dream and the Untold Story of the Black Women
Mathematicians who helped win the Space Race” by Shetterly provides a poignant example of a case where
maximal diversity was likely to improve the outcome. During the Apollo era, black women of extremely high
analytic ability were hired to double check computations made by computers and other employees at NASA.
By hiring individuals who were of high ability but who would likely be isolated due to social factors, NASA

received independent calculations that improved the chances that mistakes would be caught.
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primarily on the cost of meetings.

We then explore how the optimal level of shared understanding changes for a man-
ager who only cares about the outcome of the team but not the input costs of the
group members. We view such output-based managers as being quite common in
large organizations where managers have control over the composition and training of a
team (i.e., the level of shared understanding) but where wages are set and internalized
by a higher level of the hierarchy who lies outside the manager-team relationshipE] We
show that the level of shared understanding chosen by the manager is non-monotonic in
information costs: for moderate information costs, an output-based managers prefer-
ences are aligned and it is optimal for the manager to cultivate a shared understanding.
However, this is not the case when (i) information costs are low or (ii) when information
costs are very high and the cost of direct communication isn’t too high. When informa-
tion costs are low, output-based managers may discourage a shared understanding in
order to increase information acquisition. However, their ability to do so is constrained
by the possibility that teams may move from a discretionary strategy to a rule-based
strategy or one that involves a meeting. When information costs are high, an output-
based manager may also seek to minimize shared understanding in order to encourage
meetings and direct communication.

The rest of our paper is as follows. We discuss the related literature below. In
Section [2, we develop our baseline model and discuss the case where information is
fixed. In Section |3, we extend the model to also include meetings and information
acquisition. Finally, in Section 4] we study the problem of a manager selecting the
composition of the group both for an aligned manager and one who is outcome-based.

Section [Bl concludes.

1.1 Related Literature

At the broadest level, this paper contributes to the literature on team theory, which
began with Marschak| (1955)) and was developed extensively in [Marschak and Radner
(1972) and |Groves and Radner| (1972). In contrast to the principal-agent approach, the
team-theoretic approach studies cases where the interactions between team members’
decisions are important but where members receive a common reward. The frame-
work abstracts away from incentive problems—the main focus of the principal-agent
framework—in order to concentrate on important issues related to information (e.g.,
Aoki|, 1986, 1995; Bolton and Dewatripont, 1994), corporate culture (Crémer, 1993),

3Think, for instance, of consulting firms, investment banks, and law firms where new hires are typically
hired to a pool before being assigned to or selected by managers. Long hours are typically expected in these
firms and managers are likely to be judged on the outcome of projects assigned to them with little attention
paid to the total number of hours their team work.



hierarchies (Geanakoplos and Milgrom, 1991; Garicano, 2000; Harris and Raviv, 2002},
coordination (e.g., Kremer} 1993} Qian et al., 2006), and intra-firm competition (Alonso
et al., 2015).

Our model explores how teams with different levels of shared understanding operate
and communicate when faced with the problem of coordinated adaptation under dis-
tributed information. Team theoretic models of coordinated adaptation can be broken
into two sorts: organizational and informational. Organizational approaches ask ques-
tions about who should be hired and who should be allocated to tasks (Dessein and
Santos, 2006; Alonso et al., 2015). Informational approaches ask how much the firm
should invest in information structures, and which structures to invest in (Alonso et al.,
2008; Rantakari, 2008, 2013). Our model falls within the informational approach, as
we are trying to analyze the conditions under which the organization performs better
with a system in which agents have shared understandings. Two closely related papers
are Marschak and Radner| (1972)) and [Prat (2002)), which both ask an extreme version
of our question by analyzing when perfectly correlated signals outperform independent
signals. We interact this question with a number of more traditional informational
approaches such as investing in improved signals and having costly meetings.

Shared knowledge has been explored in the corporate culture literature, which seeks
to understand the ways in which culture can help maintain cooperation amongst or-
ganizational members. Within this literature, |Crémer| (1993)) studies a team-theoretic
setting where corporate culture is the stock of knowledge that is shared between team
membersﬂ Shared knowledge can be optimal when coordination is important to a
team, as it increases the efficiency of communication. Similar to our work, |[Crémer
(1993)) finds that shared understanding is only useful in the case where coordination
adds more value to the firm than getting one of the members to make the right deci-
sion. This result is generalized in |[Prat| (2002) which shows that shared information is
optimal when payoffs are supermodularE]

Our paper focuses primarily on the supermodular case where shared understandings
can be beneficial. As such, it complements an existing literature that concentrates on
solving complex problems in environments where payoffs are submodular. As seen in
Hong and Page (2001, 2004)), Page (2008), and LiCalzi and Surucu (2012), diversity

tends to be optimal in these settings as it allows for knowledge spillovers between

4Corporate culture has also been studied in a variety of other ways. For example, Kreps (1990), and
the interpretation of [Kreps| (1990) by Hermalin| (2001), study models where corporate culture is a means
for selecting a particular cooperative equilibrium, amongst many, in repeated games. Lazear| (1995) and |Li
(2016) study the emergence of corporate culture when preferences evolve through interactions or knowledge
sharing while |Gorton and Zentefis (2020) studies an environment where corporate culture is formed via
top-down communication of the CEQ’s preferred culture.

5See also Dong et al.| (2024)) for an analysis of optimal cognitive diversity in a spatial settings where the
nature of production and the objective criterion being applied are explored.



agents.

Our paper explores the issue of managers who strategically manage shared under-
standing within the firm. As such, we are related to |[Van den Steen| (2010a) and [Van
den Steen| (2010b), which studies how diversity influences decision-making in organiza-
tions. [Van den Steen| (2010a)) finds that more pronounced homogeneity leads to more
delegation, less monitoring, and higher effort. However, it could also discourage infor-
mation collection and experimentation. |[Van den Steen| (2010b|) shows that managers
in organizations are inclined to hire employees with beliefs similar to theirs since they
believe that this will lead to the best results. Homogeneous beliefs are reinforced via
shared experiences since individuals within successful organizations are likely to update
their beliefs in the same direction. Our paper also models how a manager influences
a team’s shared understanding. However, we study an environment where team mem-
bers jointly agree on the amount of information to acquire, at a cost, to maximize their
joint surplus, while the manager ignores the cost of information collection and max-
imizes the team’s expected output. We find that information acquisition and shared
understandings are substitutes and identify cases where self-interested managers may
hire for diversity to encourage information acquisition or direct communicationﬁ

Finally, there is a nice empirical literature on the effects of shared understandings
on performance. Psychologists have captured this idea by talking about shared mental
models of the task—whether teammates have correlated ways of interpreting information
pertaining the task at hand. Both in the lab (Mathieu et al., 2000) and in the field
(Lem and Klein, 2006; Hallet et all [2025), teams with more closely shared mental

models of the task perform better.

2 Base Team Environment

Consider a team consisting of two agents, labeled 1 and 2, each of whom controls an
inalienable decision right to choose action A or action B. There is a dichotomous
unobservable state of the world o € {A, B}, and the agents share a common prior that
o = A with probability = > 1/2. The agents also share a common state and action-
dependent payoff V (a1, az|o), where a; is the action of agent i and o is the state of the
world. This commonality abstracts away from incentive conflicts within the team and
is what makes this a team-theoretic environment. We make the following assumptions

about these payoffs:

6Manipulating the composition of the team to encourage information acquisition is also explored in Bel et
al| (2015) and |[Smirnov and Wait| (2016). In these papers, workers vary in their familiarity with one another,
and teams comprised of familiar individuals produce higher output given the same level of effort. However,
the marginal return to effort is decreasing in familiarity. Thus, familiarity and effort provision are substitutes
and managers may optimally match unfamiliar individuals into teams to promote effort.



Assumption 1 V(A,A|A) =V (B,B|B) =1
Assumption 2 V(A,B|A) =V(A,B|B) =V (B,A|A) =V (B,A|B) =0
Assumption 3 V(A4,A|B) =V (B,BJA) =V <1

Assumption [I] states that the payoff for coordinating while adapting to the state is
independent of the state. Assumption [2| states that when only one player’s choice
matches the state, it does not matter which player matches. This value is normalized to
zero and is always less than the value of coordinating and adapting to the state. Finally,
Assumption [3] says that the value of coordinating on the wrong action is independent
of the state. The key payoff parameter in our model is V¢, which we refer to as the
value of coordinating.

In order to leverage results from the existing literature, it is useful to define super-
modularity in our environment with regard to the payoff function V. For two actions
a1 € {A, B} and ag € {A, B}, let min(ay, az2) and max(a;,az) be lexicographical oper-

atorsm Then, supermodularity requires the following:

Definition 1 The payoff function V is supermodular in the agents’ actions if, for any
two action vectors (ai,a2) and (ai,as) and for all states o € {A, B}, the following
holds

V(ay,aslo)+V(ay,az|o) < V(min(ay, a;), min(asg, ag)|o)+V (max(a, a; ), max(ag, a2)|o)

In our setting, the left and right sides of the equation above differ only in the case
where (a1, a2) and (aj,as) are either (A, B) or (B, A). Thus, supermodularity will
hold if

2V(A,B|o) <V (A, Alo) + V (B, Blo).

Noting that 2V (A, Blo) = 0 and V (A, Alo) + V(B, Blo) = 14 V¢ for all o, the payoff
function is supermodular in cases where the value of coordinating, V¢ > —1. V¢ is
modular when V¢ = —1 and submodular when V¢ < —1.

In the baseline model, agents must choose their actions simultaneously and without
communication. However, before taking an action, each agent receives a dichotomous
private signal, s; € {A, B}, which may be correlated with their partner’s signal. With
probability p the two individuals receive the same signal and thus have perfectly corre-
lated signals. With probability (1 — p) the two individuals receive independent signals.

We assume that in each state o, an individual receives signal ¢ with probability qﬁ

"For example, min(4, A) = min(4, B) = A and min(B, B) = B.

8Note that ¢ will also be the probability that an individual who follows their signal correctly matches the
state since Pr(s; = ANo = A)+ Pr(s; = BNo = B) = Pr(s; = Alo = A)Pr(c = A) + Pr(s; = Blo =
B)Pr(B) =qr+q(l —m) =q.



This implies that the the probability that both signals are equal to the true state
is pg + (1 — p)g?, the probability that both signals are opposite to the true state is
p(1 —q)+ (1 = p)(1 — ¢)?, and the probability that only one signal matches the true
state is equal to 2(1 — p)q(1 —¢q). In this last case, we assume that each agent is equally
likely to have the signal that matches the state. We assume, throughout, that the
signals are weakly positively correlated (1 > p > 0), and that signals are more infor-
mative than the initial prior (i.e., ¢ > w)ﬂ We will refer to p as the level of shared

understanding in our team, and refer to ¢ as the quality of the signal.

2.1 An Example

As noted in the introduction, a simple example of our baseline example are two police
officers arriving separately to a crime. Each officer receives reports over the radio about
the situation and must quickly decide on which of two potential exits to cover. The
quality of the signal relates to how easy it is that the officers can predict which exit
the criminal will use. The level of shared understanding is likely to be related to two
characteristics of the problem. First, shared understanding is likely to be influenced
by the amount of shared information the two officers receive from dispatch. Second,
shared understanding is likely to be related to their underlying training and the extent
to which the officers cotton on to different components of the world.

Assumption 1 says that if both police officers arrive at the same exit as the criminal,
the outcome is the same regardless of the exit. Assumption 2 says that both officers
are equally capable of making the arrest if confronting the criminal alone but that this
situation is strictly worse than coordinating on the correct door. Finally, Assumption
3 says that if both officers arrive at the exit without the criminal, the particular door
does not matter.

The value of coordinating, V¢ is the value of not catching the criminal and is
normalized against the case where the two officers catch the criminal together and
the case where one officer attempts to make the arrest alone. This normalization will
depend on the risk posed by the criminal in making a solo arrest and the cost associated
with letting the criminal leave the scene. In the supermodular case where V¢ > —1,
the criminal is dangerous and/or the criminal is likely to be caught by other police.

The key assumptions in our baseline model are that information is exogenous and
that communication is either impossible or prohibitively expensive. We study alter-
native cases where team members must collect information and can communicate in

section [3l

9This assumption puts some structure on the posteriors m4 and mp that arise after receiving signals A
and B. In particular, ¢ > 7 implies that 75 < 0.5 <7 < 74.



2.2 Equilibrium Team Play and the Value of Shared Un-
derstanding

We solve for Bayesian Nash Equilibrium (BNE) of this game, with the additional
refinement that an equilibrium will never be played if it is universally Pareto dominated,

i.e., Pareto dominated for all parameters satisfying the assumptions above.

Definition 2 Define four sets of strategy profiles:

e A A Unresponsive, where both agents play A after all signals. Denote the team’s

payoff under this strategy u4.

e A B Unresponsive, where one agent plays A and one plays B, regardless of their

signals. Denote the team’s payoff under this strateqy u\B.

e RR Responsive, where both agents follow their signals. Denote the team’s payoff

under this strategqy u™f.

e AR Partially Responsive, where one agent follows his signal, while the other

chooses A independent of his signal. Denote the team’s payoff under this strategy

UAR .

An equilibrium of each type is defined as a BNE in which a strategy profile of that type

is part of the equilibrium.

We show in Appendix that any BNE that is not universally Pareto dominated
is of one of these four types. Thus, we will consider equilibria of these types, only.
The following proposition summarizes the existence conditions for each type of equilib-
rium. The proofs are, again, relegated to the appendix, as they are straightforwardly

algebraic.

Proposition 1 1. An AA Unresponsive equilibrium exists if and only if VC >
1—
() (D
2. An AB Unresponsive equilibrium exists if and only if VC < —(ﬁ)(ﬁ)

3. A RR Responsive equilibrium exists if and only if ¢ > 1%,0 or

o () EER),

4. An AR Partially Responsive exists if and only if ¢ < l%p and
(T ¢\ yoo(_4 m—[(L=p)a+o]\
l-7)\1-¢q) =~ \1—¢q ™ —q(1—p)
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Figure 1: Agent Equilibria in The (V¢ q) Space with p € (0,1).

Figure [1| graphically represents the equilibria in agent behavior that exists in the
(VY q) space and with p fixed. AA and AB represent regions where the associated
unresponsive equilibria exist, RR the regions where the responsive equilibrium exists,
and RA where the partially responsive equilibrium exists.

Multiple equilibria can exist in two regions. When V¢ > —1, both the Responsive
and the AA unresponsive equilibria can exist. This comes from a coordination problem.
If coordination is very important, player 1 wants to mix only in cases where player 2
is mixing. Similarly, both the Responsive and the AB unresponsive equilibria can
exist when (i) V¢ is very low and (ii) ¢ is high enough that the Partially Responsive
equilibrium does not exist[7]

Whenever a unique equilibrium exists, it is (information-constrained) efficient, but
when two sorts of equilibria exist it is possible to rank them from an efficiency stand-
point, where one type of equilibrium will dominate for some subset of the parameter
space and the other for the rest. Figure[l] a visual representation of Lemma[2] discussed
in Appendix shows the efficient equilibrium for various parameter values. Note

that in the case where V' is supermodular, the responsive equilibrium is Pareto efficient

0When V¢ is very low, all that matters is making sure that at least one player matches their action to the
state, so clearly no one wants to deviate from the AB Unresponsive equilibrium. However, if player 1 knows
that player 2 is playing the responsive equilibrium, and the signals are only weakly coordinated, player 1 can
not effectively anti-coordinate by choosing the other action. In this case, the best move is to avoid missing

the state by simply choosing whichever state player 1’s signal indicates as most likely.
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when the quality of the signal is high while the AA unresponsive equilibrium is efficient

when the quality of the signal is low.
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Figure 2: Efficient Strategies and Equilibria in The (V¢ ¢) Space with p € (0, 1).

While the level of shared understanding was held fixed in Figures [1] and [2| both
figures make clear that there is a bifurcation in the set of potential equilibria at the
point where V is modular and V¢ = —1. At this value, there is no benefit or cost to
coordinating actions relative to correctly choosing the state. Thus both players always
follow their signal and shared understanding is irrelevant. The following proposition,
which coincides with the result in Prat| (2002), makes clear that shared understanding
either increases or decreases the expected value of playing the responsive equilibrium

when V is either supermodular or submodular.

Proposition 2 Shared understandings affect payoffs only in the responsive equilibria,

and in those equilibria, payoffs increase (decrease) with shared understandings if and
only if V€ > -1 (VC < —1).

For the rest of the paper, we will concentrate on the supermodular case where
the expected value of playing the responsive equilibrium is increasing in shared un-
derstanding. Here we note two things about this region. First, because the expected
value of playing the responsive equilibrium is increasing in shared understanding, the
region for which the AA equilibrium is Pareto efficient becomes smaller. This suggests

that teams or firms who differ from one another in shared understanding may end up
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with very different procedures even when they receive signals with similar quality and
have similar values of coordination. Second, because shared understanding works to
reduce miscoordination, it has the most value in cases where signals are most likely to
be different. Since fully informative signals will always be fully coordinated regardless

of the shared level of understanding, the following proposition holds:

Proposition 3 The value of shared understanding is decreasing in the quality of the

stgnal.

3 Managing Information

In this section, we explore how shared understanding interacts with information-related
policies that are common in organizations. We begin by discussing how the level of
shared understanding in an organization influences the relative cost and benefits of
imposing rule-based decision-making on teams. We then explore how shared under-
standing interacts with direct communication that could be achieved if teams were
forced to communicate in costly meetings. Finally, we analyze cases where teams must
accumulate information through investment and explore how information-acquisition

incentives change with shared understanding.

3.1 Rules

Consider an extreme sort of information policy, which we refer to as Rules, in which
all discretion is taken from agents and their actions are completely pre-specified. We
model this policy choice as a commitment before the game begins, and suppose it is
chosen by a representative agent. If they decide to impose rules, perhaps at a cost, the
agents’ action sets are restricted in whichever way the planner decides. Otherwise, the
game unfolds exactly as outlined in Section

The use of rules is a weakly dominant strategy for the planner whenever an unre-
sponsive equilibrium is efficient (uAA > uf*f)| while discretion is a weakly dominant
strategy whenever a responsive equilibrium is efficient. Essentially, rules can be used to
solve the agents’ coordination problem when there are multiple equilibria. The value of
rules is large when the team payoff from playing the unresponsive equilibrium exceeds
the payoff from a response equilibrium by a large amount. The following proposition

characterizes when that is the case.

Proposition 4 The value of imposing rules increases as the prior strengthens or the
value of maladaptive coordination increases, but it decreases as information quality

improves or the teams shared understanding increases.
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We can use this proposition to understand what sorts of endeavors are likely to
induce rulemaking. There are two sorts of reasons why rules might be valuable, one
concerning payoffs and one concerning information. From a payoff perspective, man-
agers will implement rules when the payoff from coordinating on the wrong thing is
high enough, so a miss by both workers is not “too bad”, relative to the risk of them
failing to coordinate. Thus, very complementary tasks will be subjected to rules.

From the informational side, we expect to see rules when managers are very sure
of the right thing to do, even before the information comes in, or where the infor-
mation that is pending is poor. Of particular interest for our investigation of shared
understandings, rules are also particularly attractive when the workers do not have a
shared understanding of the world. Taken to the extreme, when agents have perfectly
shared understandings of the world, there is never a reason to use rules. Rules solve
the problem of failure to coordinate, but with perfectly shared understandings, that
never happens. Rules and shared understandings are, therefore, substitutes, and a
management would likely invest in one or the other, but not both. The same is true

of informational quality, more generally.

3.2 Meetings

Consider a second information policy, where the team schedules a meeting in which
they share their signals and make a plan before choosing their actions. If they are going
to use a meeting policy, they must commit to it ex-ante (no emergency meetings) and
each pay a cost m. In the absence of a meeting, we assume that the efficient equilibrium
will be played, perhaps through the careful use of rules. If a meeting occurs, the agents
can simply agree to a joint strategy at the meeting after jointly observing the signals.

After a meeting, agents can have one of three beliefs about the probability that the
state is A, depending on the set of signals the agents received. Given our assumption
that V¢ > —1, however, the optimal choice after a meeting is either to play (A, A) or
to play (B, B), and the (B, B) will be optimal if and only if both agents receive the
B signal. The team’s expected payoff of having a meetings ©™. Relative to simply

playing the responsive equilibrium absent a meeting, this results in a net gain of
(1) WM — P = (1- p)[2g(1 — g)(m + (1 = W)V)] = m.

The gain from meetings, relative to simply following signals, comes from avoiding
coordination problems when signals fail to align. This advantage, therefore, increases as
the value of maladaptive coordination rises or when the prior is stronger, but decreases
in the cost of the meeting and in the quality of the signal or completeness of the shared

understanding.
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Of course, for meetings to be attractive they have to outperform both the responsive
equilibrium and the rules-based A A-unresponsive equilibrium. Since, other than the
meeting cost, the payoff from meetings is simply the same as that from playing the
responsive equilibrium, plus an additional coordination payoff when the signals do not
match, similar factors drive the comparison between meetings and the AA-unresponsive
strategy. The gain from meetings, relative to the AA-unresponsive payoff, increases in
the quality of the signal and decreases in the value of maladaptive coordination, the
strength of the prior, or the cost of the meeting. More interesting, and in contrast to
the responsive equilibrium, the payoff from meetings decreases in the degree of shared
understanding, since there is less information to share at them.

Overall, the manager will implement meetings when the payoff under meetings
exceeds the payoff from the best alternative. Of course, when meetings are costless, they
are always preferred, while when they are very costly they are never preferred. In fact,
there will always been a unique cost of meetings m*, which measures the attractiveness
of meetings, where meetings are preferred for all m < m* and no meetings are preferred
for all m > m™*. The following proposition summarizes how m* varies with the other

parameters of the model.

Proposition 5 The threshold m that makes introducing a meeting optimal, m”,

1. first increases in VC and then decreases. It increases when the responsive equi-

librium outperforms the AA-unresponsive equilibrium.

2. first increases in q and then decreases. It increases when then the A A-unresponsive

equilibrium outperforms the responsive equilibrium.

3. first increases in m and then decreases. It increases when the responsive equilib-

rium outperforms the AA-unresponsive equilibrium.
4. decreases in p.

5. approaches zero as q or VC approaches 1.

As an alternative way of seeing when meetings are attractive, Figure [3] fixes m,
7, and p, and lets V¢ and ¢ vary. Consistent with Proposition [5, meetings are most
attractive for moderate ¢ and V¢, when it is a “close call” between rules and discretion.

Taken together, our theory predicts that the value of meetings lie in a parameter
zone that is “in between” the zones where the responsive equilibrium and rules are
optimal. As such, we would predict that meetings are most valuable for intermediate
signal qualities and for cases where there are intermediate payoffs to maladaptive co-
ordination. Meetings and shared understanding are also substitutes and, as such, the

value of a meeting is decreasing in shared understanding.
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Figure 3: Meeting Policy (V' q) Space with p € (0,1).

3.3 Investing in Information

In previous sections, we studied how teams may establish rules or hold meetings when
both the quality of information and the level of shared understanding is given. This
section explores how a team’s incentive to accumulate information changes in response
to changes in shared understanding. We highlight that information acquisition and
shared understanding are substitutes and that a team will reduce investments in infor-
mation in response to a greater shared understanding.

Consider a modified environment where the team must jointly decide on the amount
of information they collect prior to the start of the game. Starting from any prior, T,
assume that each individual in the team can invest in a signal that is correct with
probability 7 + I at cost c¢I?, where I € [0,1— 7] and ¢ > 0. We maintain the assump-
tion that V¢ > —1, as this is the region where both adaptation and coordination are
important. In this region, if a team chooses to use rules, the team plays AA and has

no value for information. It thus selects I = 0.

Information Acquisition in the Responsive Equilibrium: If a team chooses to
play the responsive equilibrium, they jointly choose I € [0,1 — 7] that maximizes the

team’s joint surplus
(2) st (p,m,c, VO) = m1ax2(a(I) + B(I)VE) — 2¢l?,
where a(I) = p(n + I) + (1 — p)[r + I]? is the probability that the team matches on

the correct state and 3(I) = p(1 — 7 —I) + (1 — p)(1 — m — I)? is the probability that

the team jointly coordinate on the wrong state.
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In the interior case, the maximization yields

1-V)+2(1 - p)(r - (1 -mV)]
2¢—2(1 —p)(1+VO) '

(3) IRR(C,p, VC’) _ [P(

This equation represents a maximum only when the second-order condition is negative,
which occurs when 2¢ — 2(1 — p)[1 + V¢] > 0. If the second-order condition is not
satisfied, the value function is strictly increasing in I and the team prefers to be fully
informed.

By taking the derivative of I%%(c, p, V) with respect to p it can be shown that
I is decreasing in p and thus that the amount of information acquired by the team
is decreasing in shared understandingﬂ In other words, information acquisition and
shared understanding are substitutes. The intuition for this is straightforward. With-
out a shared understanding both team members must be informed in order to correctly
coordinate on the correct state. Thus without a shared understanding, investing in in-
formation improves both coordination and adaptation. When the two parties have a
shared understanding, by contrast, information improves only adaptation and is there-
fore less valuable.

Although investment in information is decreasing in p, the joint surplus of the team
is always increasing in shared understanding. By the envelope theorem, %Z’C’VC) =
(7 + I7R) — (7 + I7E)2][1 + VO] > 0. So, the sign of the relationship between shared
understanding and welfare is unchanged when information acquisition is endogenized,
but the team “takes” some of the benefit as reduced information investment.

While the relationship between shared understandings and investment/welfare is
monotonic, the relationship between shared understandings and the expected output of
the team, (a(I7)+B(I*R)V¢), can be non-monotonic. We know from the exogenous-
information analysis that absent investment adjustments, shared understanding leads
to an increase in the expected output of the team when V¢ > —1. However, the
reduction in investment can be so extreme as to more than offset this direct increase.
The net effect depends on the convexity of the cost of information. For high costs, the
expected output of the team is increasing in p. For moderate moderate costs, output
decreases up to some p and then increases. Finally, for low costs, the output of the
team is decreasing in p. This fact may suggest that there is scope for a manager who

only cares about outputs but not costs to influence the probability of successful coor-

"Taking the derivative of I with respect to p yields:

4 OIRR(Cv P O) _ (1 — 277)(1 + VC) — 2(1 + VC)IRR(Cv P VC)
) dp B 2c —2(1—p)(1 + V) '

This derivative is negative when the second-order condition is satisfied under the assumptions that = > 1/2,
Ve e (~1,1],and I €[0,1 — 7.
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dination by influencing the level of shared understanding. We return to this issue below.

Meetings: We now study the incentive to gather information in the case of a meeting.
As in the earlier section, meetings allow two individuals who receive opposing signals
to coordinate on A. As before, we assume that the team chooses I € [0,1 — 7] jointly

and maximizes:
(5) sM(p,m,c,VE m) = mlax2(oz(l) + BIVE + (D) (m + (1 — W)VC)) —2¢I? —m,

where a(7) is the probability the team shares the correct signal, 5(I) is the probability
the team shares the incorrect signal, and v(I) = (1 —a(l) — (1)) = 2(1 — p)[x + I][1 —
m — I] is the probability of both team members receiving different signals.

In the interior case, the maximization yields
(6)

1 (e, po €y — PUL=VE) +201 = ) — (1= m)VE) =21 = p)(2n = D(r + (1 =m)V)]

20 —2(1=p) 1+ V] +4(1 —p)(r+ (1 —7)VC)

As before, the solution to this equation is a maximum only when the second order
condition is negative, which occurs only when 2¢ —2(1 — p)[1 — 2(7 + (1 — m)VE)] > 0.
If the second-order condition is not satisfied, the value function is strictly increasing in
I and the team prefers to be fully informed.

By comparing and @ and noting that in equation @ the last term in the
numerator is negative and the last term in the denominator is positive, teams acquire
strictly less information when a meeting occurs than in the responsive equilibrium.
This reduction in information acquisition is due to a meeting improving the outcome
of teams where the two members receive different signals and reducing the coordination
benefit of the two parties receiving more precise signals.

Unlike the responsive equilibrium, information acquisition is increasing in pE In
a meeting context, a shared understanding increases the likelihood that both parties
receive the same incorrect signal and decreases the likelihood of mixed signals. As
receiving the same incorrect signals is the worst possible signal event, team members
prefer to acquire more information when shared understanding is high to reduce the
probability of jgintly being misinformed. In contrast to the responsive equilibrium

9s™ (p,m,e,VO)

case, —— 5= = [(m4 1) — (mr +1)?[1 = V¢ —2] < 0. Thus a team’s joint surplus

12This can be seen by taking the derivative of I with respect to p:

oI (e,p, V) _ (1—-2m)’(1-VY) 20 -2m)(1-VY) ,
" Op ~ D(p,VCme D,V o) I"(e.p V),

where D(p, VE, 7, ¢) =2c—2(1 — p)[L + V] +4(1 — p)(7 + (1 — 7)VE) and I™(c, p, V) is the investment
made by the team. Noting that the assumption 7 > .5 is equivalent to 1 — 27 < 0, both terms are positive
for V€ € [-1,1).

18



is always decreasing in a shared understanding when a meeting will occur.

Finally, just as in the responsive equilibrium, there is not a monotonic relationship
between p and the expected output of the team using a meeting: a(I) + B(I)VE +
(1 —a(I) + B(I) (7 + (1 —7)VY). For high costs, the expected output of the team is
decreasing in p, for moderate costs, the expected output of the team is decreasing up
to some p and then increasing, and for low costs, the expected output of the team is

strictly increasing in p.

4 Manager-Team Problems

In the last section, we explored how the possibility of rule-based systems, costly direct
communication, and information acquisition interacted with a shared understanding.
We saw that if a manager has fully aligned incentives, he will cultivate a shared un-
derstanding only in cases where both adaptation and coordination are important and
where the cost of direct communication via a meeting is high. In this region of the
parameter space, information acquisition was decreasing in shared understanding and
thus, although the teams was better off with a high level of shared understanding,
overall output of the team was lower.

In this section we explore how the manager may adjust the composition of the team
when her objective function differs from that of the team. We assume that a manager
has control over the composition of the team, and can thereby affect the level of shared
understanding, but the manager does not control the actions of the team. We continue
to concentrate on the case here V¢ > —1 and where both adaptation and coordination

are important.

4.1 Output-Based Managers

One way that a manager’s preferences may diverge from those of the team is that she
may care more about the team’s output than she does about the costs incurred by
team membersE] In such cases, the manager may use the composition of the team to
influence information acquisition or to either encourage or discourage meetings. We
consider, here, the extreme case where the manager completely ignores the costs of
information acquisition and meetings and only cares about the teams output. For

exposition, let

o (p, 7, e, VE) = a(I™ (p, 7, ¢, V) + I (p, 7, ¢, VENVE

13We see such output-based managers as common in large firms where hiring decisions fall to middle
managers who have a vested interest in the performance of their team but where compensation is handled
at a higher level of the hierarchy.
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be the output-based manager’s expected return if a team optimally plays the responsive
equilibrium given the manager-selected level of shared understanding p, the prior =,
the cost of acquiring information ¢, and the relative value of coordinating on the wrong

action, V. Likewise, let

Mp,m,e,VE) = a(I(p,m,¢e, V) + BUIM(p, 7, e, VEOVE
+y(IM(p, 7, e, VO (r + (1 — 1) V)

be the manager’s return if the team holds a meeting and plays optimallyﬁ Finally, let
s VO =2(r + (1 = m)VY)

be the expected value of a team that plays the AA-unresponsive equilibrium and let
oM VY =(r+ (1 -n)VY)

be the manager’s expected return if the team plays this equilibrium.

It will be useful to separate the rest of the discussion into the case where the
team will never choose to have a meeting for any information cost and the case where
meetings may occur. Recall that the expected value of the team decreases in p in the
equilibrium with a meeting and increases in p in the responsive equilibrium. It follows
that (i) the value of the responsive equilibrium relative to meetings is maximized at
p =1 and (ii) the value of a meeting relative to the other two policies is maximized
at p = 0. Furthermore, when p = 1, the investment choices and expected output of a
team are the same with or without the meeting.

Since meeting costs are assumed to be positive, the responsive equilibrium is always
implementable by setting p to be very high. By contrast, the existence of meetings
depends on both the meeting cost and the other parameters. Let m(m, Vc) be the
meeting cost m such that

max SM(O,ﬂ',C, Vc,m) — SRR(O, T, C, VC) =0.
C

The following lemma specifies (7w, VC).

Lemma 1 If the cost of meeting is such that m > m(m, VC), where

m(r, VY = 4x(1 — ) [+ (1- W)Vc],

M As before, a(I) = p(m + I) + (1 — p)[r + I]? is the probability that the team matches on the correct
state, B(I) = p(1 — 7 —I) + (1 — p)(1 — = — I)? is the probability that the team jointly coordinate on the
wrong state, and v(I) = (1 — a(I) — B(I)) is the probability that the signals of the team do not match.
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then meetings never occur.

In the case where m > m(m, VY) and meetings never occur, note first that the
payoff to rules is equal to 044 (m, VC), and this payoff is independent of p. Further,
the responsive equilibrium with p = 1 outperforms rules, even for very low levels
of information acquisition. This immediately implies that the manager will always
prefer the responsive equilibrium to rules and she can always induce the team to select
the responsive equilibrium over the AA-unresponsive equilibrium by setting p to be
very high. It follows that the manager’s objective is to maximize his surplus in the
RR-responsive equilibrium subject to the constraint that the team may choose the
A A-equilibrium.

For a given ¢, let p(c, m, V) be implicitly defined as follows:

Definition 3 p(c, 7, VC) 1s the lowest level of shared understanding where a team will
select the responsive equilibrium over a rule-based equilibrium if these are the only two
policies available. If s™F (0,7, ¢, VC) > s44(m, VY), then plc,n,VC) = 0. Otherwise,
ple,m, VO) is the p that satisfies

s (p,m, e, V) = s (m, VO,

p(c,m, V) defines the cutoff point where the team is indifferent between the RR-
responsive equilibrium and AA-unresponsive equilibrium. As such, we can now derive
the optimal choices of the manager for varying costs of information collection. Recall
that the relationship between share understanding and the expected output in the
responsive equilibrium, of*%(p, 7, ¢, V¢), is non-monotonic and can vary with ¢. When
the cost of information is low, the expected output is decreasing in p and the managers
will prefer to select the lowest level of shared understanding that is consistent with
a responsive equilibrium. Thus, the optimal level of shared understanding will be
ple,m, VC) defined above.

At the opposite extreme, when the cost of information is very high, the team’s
expected output is increasing in p since the team will collect very little information
but shared understanding helps to avoid miscoordination. Thus, for high costs, the
manager would prefer to select a team with maximal shared understanding.

At intermediate costs of information increases, the manager’s payoff in the respon-
sive equilibrium is convex in p with a single interior minimum@ As such, there will be

a point where a team generates better outcomes under perfectly shared understanding

15Solving for the minimum is algebraically painful, but it is possible to bound the set of ¢’s for which
output is convex by identifying the ¢ for which (i) expected output is strictly decreasing and (ii) expected
output is strictly increasing. These can be found by finding the points where the slope of al(I77) 4 B(177) V¢
is zero under perfectly shared understanding (p = 1) and no shared understanding (p = 0). For example,
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than at the point where they are indifferent between rules and the responsive equi-
librium. Let ¢(m, V) be the ¢ such that o*%(p(c,m, VE), 7, ¢, VC) = of*R(1,7,¢, V)
Then, for ¢ > ¢&(m, V®), the manager prefers to maximize shared understanding in a
team.

Figure [4 illustrates the decision the manager faces, in each of these cases. In Case
1, when information is cheap, the team will always play the responsive equilibrium and
invest in information, so the manager can utilize a totally heterogeneous team (p* = 0).
In Case 2, with slightly higher costs, such a team would simply implement rules, so
the manager chooses a team with higher levels of share understanding to induce the
responsive equilibrium. In Case 4, for very high costs of information, the manager
and team are aligned, and higher p = 1 is preferred by both. Case 3 illustrates the
boundary case, where the manager is indifferent between implementing the Case 2 and
Case 4 strategies.

The discussion above generates the following decision rule:

Proposition 6 When m > m(m, VC), a manager who cares only about the output of

a team but not its costs will set p as follows:
1. if ¢ <&(m, VC) the manager sets p* = p(c,m, V).
2. if ¢ > ¢(m,VC), the manager sets p* = 1.

This choice will always induce the team to play the responsive equilibrium.

Consider now the case where m < m(m, V), so that there exist costs and levels
of shared understanding where the team may also hold a meeting. In order to induce
the RR-equilibrium, the manager must now ensure that the team prefers the RR-
equilibrium over both the AA-equilibrium and a meeting. Analogous to the analysis

above, let p(c, m, VC) be implicitly defined as follows:

Definition 4 ﬁ(c,ﬂ,Vc) s the lowest level of shared understanding where a team
will select the responsive equilibrium over the AA-equilibrium and an equilibrium in-
volving meetings. If s®F(0,7,¢,VC) > max{s(x,VC),sM(0,7,¢,VC, m)}, then

when V¢ = 0, it is the case that the manager’s payoff is weakly decreasing in p when

2 {(% —1)+/er -1 —3x(1 - )

<
¢ 3

This expression is equivalent to ¢ < % in the case of m = 1/2. Likewise, the manager’s payoff is weakly

increasing in p when
147

c > .
1—m

This expression is equivalent to ¢ > 3 in the case of # = 1/2. Thus, an interior minimum will exist for
ce [%,3] when 7 = 1/2.
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Figure 4: Manager’s optimal choice of p as the cost of information increases in case where
m > m(VY). When information costs are low, the expected output of the team is falling in
shared understanding and the manager hires for diversity (case 1) subject to the constraint
that the team may choose to adopt a rule (case 2). For high costs, the preferences of the
manager and team are aligned and the manager maximizes shared understanding (case 4).
There is a cutoff cost of information where the manager switches between these strategies

(case 3).
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ple,m,VE) = 0. Otherwise, p(c,m,VC) is the p that satisfies
SRR(pv m,¢C, VC) = maX{SAA(Trv VC)7 SM(p7 m, ¢, Vca m)}

For low costs, the probability of coordinating on the good state is higher in the
responsive equilibrium than with a meeting due to the incentive to free ride on infor-
mation acquisition in meetingsm As such, the manager will prefer to implement the
RR equilibrium. Further, when the cost of information is low, the expected output
of the manager is decreasing in p in the RR~equilibrium and the manager will prefer
to select the lowest level of shared understanding that is consistent with a responsive
equilibrium. The optimal level of shared understanding will therefore be p(c, T, VC)
since he must prevent the team from both holding their own meeting or adopting a
rule.

As the cost of information becomes larger, the output of the firm under the RR-
equilibrium becomes convex in p and eventually becomes strictly increasing in p. As
such, there will exist a cost where the manager will prefer to either (i) set p = 1 and
induce the team to play the RR equilibrium or (ii) set p = 0 and induce the team to
hold a meeting.

To distinguish between cases, it is useful to define two cost cutoffs. First, let
Z(m, V) be the ¢ such that o*E(j(c, 7, V), 7, ¢,VE) = o (1,7, ¢, VC). This is the
cost for which the manager is indifferent between implementing the RR equilibrium that
maximizes information and the RR equilibrium with perfectly shared understandings.
Further, let &(m, V) be the cost of information such that o®*(j(c, 7, VE), 7, ¢, VE) =
oM (0,¢,m, V) . This is the cost for which the manager is indifferent between imple-
menting the information-maximizing R R-equilibrium and a meeting.

If E(m, VC) < &(mr,VY), the managers optimal policy is divided into three parts.
First, when costs of information acquisition are low, the manager selects the lowest level
of shared understanding that is consistent with a responsive equilibrium. This level
of shared understanding maximizes information acquisition for the firm. As costs rise,
the output function becomes convex and there is eventually a cost where coordination
concerns dominate information acquisition. As such, the manager has preferences
that are aligned with the team and implements the RR-equilibrium with fully aligned
incentives.

Finally, for very high information acquisition costs, the firm may not be able to
induce high levels of information acquisition under the RR equilibrium. In this case,

the manager may instead wish to induce direct communication between team members

16To see that information acquisiting is lower under a meeting, note that when c is small, the probability
of coordinating on the good state is decreasing in p in the responsive equilibrium and increasing in p with
meetings. As they are equal at p = 1, information acquisition is lower under a meeting for all possible p.
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via a meeting to prevent miscoordination. Since shared understanding reduces the
value of this direct communication, managers who wish to implement meetings will do
so by hiring for diversity and setting p = 0. Let ¢™ (7, V) be the cost of information
acquisition such that o™ (0,7, ¢, V) = of*f(1,7,¢, V). Then, the manager will always
prefer a meeting for ¢ > M (7, V).

Figure [5| illustrates the managers decision in the case where &(w, V%) < é(m, VO).
In Case 1, information is cheap and it is optimal for the manager to implement the
information-maximizing RR equilibrium. For moderately-high costs, the preferences of
the manager and team are aligned and the manager maximizes shared understanding
(Case 3). Finally, for very high costs, the manager hires for diversity and induces
meetings (Case 4).

The following propositions summarize the optimal strategy of the manager:

Proposition 7 When m < m(m,VY) and e(n, V) < &x, VY), a manager who cares

only about the output of a team but not its costs will set p as follows:

1. if ¢ <¢(m, VC) the manager sets p* = p(c, , VC) and implements the responsive

equilibrium.

2. ifc € (&(m,VE),M(x, VO], the manager sets p* = 1 and implements the respon-

swe equilibrium.

3. if ¢ > cM(7r, VC), the manager sets p* = 0 and implements an equilibrium with

meetings.

When m is very small or when the prior is very strong, it may be that ¢(r, VC) >
&(m,VC). In this case, there is no cost for which the manager wishes to induce a
shared understanding in his team. As such, the manager will switch from inducing the
information-maximizing R R-equilibrium for low costs of information and the equilib-
rium with meetings for high costs. The following proposition summarizes the optimal

strategy of the manager in this alternative case:
Proposition 8 When m < m(m,VY) and ¢(x, V) > &(n, V), a manager who cares
only about the output of a team but not its costs will set p as follows:
1. if ¢ < &(m, VO) the manager sets p* = p(c,m,VC) and implements the responsive
equilibrium.
2. if ¢ > &(m, VO, the manager sets p* = 0 and implements an equilibrium with

meetings.

Taken together, output-based managers may cultivate a shared understanding in
their team when the cost of acquiring information is moderate. However, when (i)

information costs are low or (ii) information costs are high and meeting costs aren’t
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Figure 5: Manager’s choice of p as the cost of information increases in case where m <
m(m, V) and ¢(m, VY) < &(mr,VY). When information costs are low, the manager seeks to
encourage information acquisition in the RR equilibrium by reducing shared understanding
subject to the constraint that the team may hold a meeting or adopt a rule (Case 1). For
moderate costs, the preferences of the manager and team are aligned and the manager
maximizes shared understanding (Case 3). There is a cutoff cost of information where the
manager switches between these strategies (Case 2). Finally, for high costs, the manager
hires for diversity and induces meetings (Case 4).
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too high, an outcome-based manager will push for more diversity than is preferred by
the team. When information costs are low, output-based managers may discourage a
shared understanding in order to increase information acquisition. However, their abil-
ity to do so is constrained by the possibility that teams may move from a discretionary
strategy to a rule-based strategy or one that involves a meeting. When information
costs are high, the team may collect only a small amount of information regardless of
the equilibrium played or the level of shared understanding. As such, an output-based
manager may seek to minimize shared understanding in order to encourage meetings

and to avoid echo chambers from emerging.

5 Conclusion and Discussion

We explored how managers might use shared understanding to improve decisions in
environments where underlying teams face the twin goals of coordinating decisions
and adapting to changing circumstances. We show that in our team-theoretic set-
ting, a shared understanding improved the outcome of teams only when payoffs are
supermodular and where getting the second person to align their actions with the first
person is more valuable than getting the first person to choose the correct state, but
where coordination is not so dominant a goal that it is better for the team to adopt
a rule. When payoffs are submodular, teams are hurt by shared understanding since
coordinating on the wrong state becomes more common.

We then considered the value of shared understanding in the supermodular case
when team members also must exert effort to collect information and where it was
possible to force the team to share information via a costly meeting. In the absence
of a meeting, we showed that shared understanding is a substitute for information
acquisition and that a team will optimally exert less effort as the level of shared un-
derstanding increases. Thus, while shared understanding improves the overall welfare
of the team, there is a substitution away from information collection. When meetings
are allowed, shared understanding reduces the overall welfare of a team that holds a
meeting since there is no value in sharing the same signal. Thus, managers who wish
to use meetings should hire for diversity to avoid echo chambers.

Finally, we considered the case of an output-based manager who cares only about
the outcome of the group but not its input costs. This manager is responsible for
hiring decisions and can therefore influence shared understanding, but cannot directly
force the team to take a specific course of action. We show that an output-based
manager may hire for diversity to encourage information acquisition when the cost of
acquiring information is low. However, the level of shared understanding cannot be

set too low or else the team will adopt rules or organize a meeting where there is an
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incentive to free ride on information collection. As costs increase, the preferences of the
manager and team become aligned and a manager may maximize shared understanding
to avoid miscoordination. Finally, when costs are high and the cost of meetings is low,
the manager may again hire for diversity to encourage direct communication and the

sharing of information.
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A Appendices: Additional Notation, Discussion
of Other Equilibria, and Proofs

A.1 Additional Notation

The following notation is useful in discussing the additional equilibrium that exist in
our environment and in the formal proofs below. Let s be the posterior probability

that the state is A after observing signal s. Note that by Bayes’ rule:

Tq
g+ (1—m)(1—q)
m(1—q)
m(l—q)+ (1 —m)q

TA =

g =

Further, let PZ(e) represent the probability that the other player chooses action
A when the state is o, the player observes signal s, and the other party is playing
strategy profile e € {A, B, R, F'}, where A is the strategy of always selecting A, B is
the strategy of always selecting action B, R is the responsive strategy, and F' is the

strategy of always choosing an action that is opposite of one’s signal (i.e., flipping the
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signal). Then the payoff to choosing A and B after signal j are:

U(Als = j,e) =mj[Pf (e)VTF + (1= P(e)VN] + (1 — m) [P )V + (1 = PP (e)) V7],

U(Bls = j,e) =mj[P(e)VN + (1 = P (e))V] + (1 = m)[PP (VN + (1 = PP (e) V7).
Normalizing VFB =1 and V¥ = 0, we can rewrite these utilities as:

U(A‘S =J 6) :ij’]A(e) +(1- Wj)P]'B(e)Vca

(8)
U(Bls = j,e) =mj(1 = P{{(e))V + (1 —m;)(1 = P (e)).

For a given p and ¢, note that:

PY(R) = p+(1-p)
PE(R) = p+(1-p)(1-9),
Pg(R) = (1-p)q,

PE(R) = (1—p)(1—gq),
PY(F) = (1-p)(1—q),
PE(F) = (1-p)g,

Pg(F) = p+(1—p)(1—q),
PE(F) = p+(1-p)g

Further, P7(A) =1 and PZ(B) = 0 for all states o and signals s.

S

A.2 Proofs

Proof of Proposition 1: For an equilibrium to exist, it must be that both players
prefer to play their candidate equilibrium action for each possible signal. We thus need
to identify the set of conditions for which neither player has an incentive to deviate from

their candidate strategy. We do this for each of the four strategy profiles separately:

e AA Unresponsive, where both players play A after all signals: for this to be
an equilibrium, players must prefer to play A, after either signal, i.e., U(Als =
j,A) > U(B|s = j,A) in . Replacing for PJA(A) = PJB(A) = 1, this requires
that m; + (1 — Wj)VC > 0, and the binding constraint occurs after the B signal

(since mp < m4), so a necessary and sufficient condition for this equilibrium to

exist is V¢ > — lfﬁB. Replacing for 75 = % yields
T (1-4g)

9 Ve > -

) - 1-m q



This threshold is negative, increasing in ¢ and decreasing in m, and given our

assumption that ¢ > , it is minimized at —1 when ¢ = .

e AB Unresponsive, where one player plays A and one plays B, regardless of

their signals: the player who plays A expects his partner to always play B, so he
checks that U(A|s = j,B) > U(B|s = j, B) when P]A(B) = PJB(B) = 0. This

comparison reduces to 7;V¢ +(1—7;) < 0, which binds for 7, if at all. Similarly,

the player who plays B expects his partner to always play A, so equilibrium
requires that U(B|s = j, A) > U(A|s = j, A) when PJA(A) = PJ-B(A) = 1. Again,
the comparison reduces to 7; + (1 — 7;)V® < 0, which will bind for 74, if at

all. Finally, since m > 1/2 it’s easy to check that the constraint for the player

who plays B binds, if either does, so the necessary and sufficient condition for an

equilibrium of this sort to exist is V¢ < — Replacmg formy =

mq
mq+(1-m)(1-q)’

allows us to again derive a condition on pr1m1t1ves,

(10)

This threshold is negative, decreasing in m and ¢, and given our assumption that

q > m, it is maximized at —1 when ¢ = 7 = 1/2. Since ¢ >

1

5, comparing

this condition to @) shows that there does not exist a V¢ where both the AA

Unresponsive equilibrium and the AB unresponsive equilibrium both exist.

e Fully Responsive, where both players follow their signals: in this equilibrium,

a player expects his partner to play such that

Pi(R) = p+(1—-p,
PE(R) = p+(1-p)(1—q),
PE(R) = (1—-p)(1—gq), and
PE(R) = (1-p)g.

The binding constraint is for the player to be willing to follow the equilibrium

strategy after a signal B, when

U(A|s = B, R)
U(B|s = B, R)

= wp[P5(R)] + (1 —mp)[PE(R)VC], and
= mp((1 - P5(R)V]+ (1 - 75)[(1 - PE(R))].

Thus he is willing to follow his signal whenever

(1 — PA(R)VC +

(1 —7p)(1 — P§(R)) = mp P4 (R) + (1 — 7p)PE (R)VC.
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Gathering the V¢ terms, this condition becomes
VElrp(1 = P5(R)) = PE(R)(1 = 7p)] 2 1P (R) — (1 - 7p)(1 = PE(R)),
or, after replacing for Pg(R),

Ve Irp(1=(1-p)a)—(1=p)(1=q)(1-7p)] = mp(1-p)g—(1-7p)(1-(1-p)(1-q)).

Gathering the mp terms on each side,

Vs (1=(1=p)a+(1-p)(1=¢) = (1-p)(1=q)] = 7p[(1—p)a+(1~(1=p)(1~q))]~(1~(1=p)(1~q))

and simplifying

VCrs(pg+(1-p)(1—q)+1—q)—(1—p)(1—q)] > m[2(1-p)g+p]— (p+(1-p)q).

The constant, on the right, is negative whenever g < % € [0.5,1]. But
mp < 1/2, and so this condition is always satisfied and the constant on the right

is always negative.

The coefficient on V, on the left, is positive whenever

(1-p(1 -9
(I-=p)1=q) +qp+1-q

T >

which holds for ¢ < J—p. Thus, when ¢ € (0.5, J—p], the condition becomes

7B[2(1 —p)g+p] — (p+ (1 = p)g)

C
[ ey ¢ ey S ey s T g

where the RHS is negative. Label that cutoff V¢". Replacing for 7, it simplifies

to

« (g \7m—=l1—=p)g+p]
(1D Vc_(l—q) T—ql—p)

For ¢ > w/(1 — p) the condition is

mp[2(1 —p)g+p] — (p+ (1 —p)g)
mBlpg+(1—p)(1—-q¢)+1—q - (1-p)(1—q)

Ve <

but we can show that the RHS is positive and greater than 1, so the condition is

always satisfied. The RHS is greater than 1 whenever

(p+ (1 =p)g) —7mB[2(L—=p)g+p] > (1=p)(1—q) —7mp(pg+(1—p)(1—q) +1—q).
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Collecting the mp terms on the left, this becomes
melpa+ (1 —p)1—q)+1—q—[2(1=p)g+p] > (1= p)(1—q) = (p+ (1= p)a),
which simplifies to

m[2(1 = p)(1 = 2¢)] > (1 = p)(1 = 2¢) — p.

Since ¢ > %, the coefficient on wp on the left is negative, so when dividing the

condition becomes

<14 P
TB = )
2 2(1-p)(2¢-1)

which is always satisfied, since 7 < % and g > % Thus, whenever ¢ is “large”, the
fully responsive equilibrium exists, and whenever ¢ is “small”, the fully responsive
equilibrium exists as long at V¢ is bigger V.

Finally, note that if the player is willing to play the responsive equilibrium after
signal B, he is definitely willing to play the responsive equilibrium after sig-
nal A. When a player receives signal A, U(Als = A,R) = m4P4{(R) + (1 —
TA(R))PR(R)VC and U(B|s = A, R) = ma(1—P{(R))VE+(1—7m4)(1—PE(R)).

He is willing to follow his signal whenever

TAPY(R) + (1= ma) PR (R)VE 2 ma(1 = PA(R)VE + (1 - ma) (1 — PY(R)),
or
(12) 7a(1=PE(R)+(1—=ma)(1 = PF(R)VS > maPE(R)VE +(1—ma) P§ (R).

This condition is very similar to except it places a larger weight (w4 >
(1 —7p)) on the larger term ((1 — PF(R) > (1 — P4(R))VY) on the left and a
larger weight on the smaller term (PF(R)VY < P4(R)) on the right. So, if the
player is willing to follow his signal after B, and is satisfied, this condition
will be a fortiori satisfied and the player will definitely be willing to follow his
signal after A.

Thus, the responsive equilibrium exists whenever V¢ > V¢ where V¢ is de-
creasing in ¢ and increasing in p and we define V¢ = —co if ¢ > J—p. In fact,
s

V¢ approaches —oo as g — = > 0 from below.

A Partially Responsive is an equilibrium where one player responds to his
signal while the other player chooses A independent of his signal: The respon-
sive agent is facing a problem similar to in the AA Unresponsive equilibrium.

Paralleling the analysis there, equilibrium play by the responsive agent requires
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(13) A+ (1 =7V >0>a5+ (1 —mp)VC°

solving for V¢, and replacing for 7; this reduces to

-9 o _  av
14 G-me V7 T aogu-m

The non-responsive agent is facing a problem similar to the responsive equilib-
rium. Since the maximizing choice is to follow the signal for V¢ > V", we need

VC <V to be in the partially-responsive equilibrium. Since VE" < —1 <
_ (=g

(1-m)g’
checking condition (12]), when it is hardest to satisfy (p = 1) shows that it dupli-
cates the responsive agent’s constraint (V¢ > —(175%
the non-responsive player’s choice after the A signal easier to support. Sum-

it’s the non-responsive player’s V¢ < V¢ that will bind. Similarly,
) and any lower p makes

ming up, the partially responsive equilibrium requires —(kqgﬁ <VC<ve,

This range collapses and the partially responsive equilibrium does not exist if
cr ~ _ qr i TG cr — _

VY < =g (=m)" Of course, this occurs whenever ¢ >* -, since V&Y = —o0,

but it can also occur for finite, but sufficiently small, V", such as when ¢ is just

below %
—p

Proof of Proposition 2: Proposition two states that shared understandings affect

payoffs only in the responsive equilibria, and in those equilibria, payoffs increase (de-

crease) with shared understandings if and only if V¢ > —1 (VC < —1).

The first part of this proposition, which states that shared understandings affects

payoff only in the responsive equilibria, is shown directly in the proof of proposition

1. As seen there, shared understanding enters into each equation through the PZ(e)

terms and these terms only depend on shared understanding when the other player is

playing strategy R (or the dominated F strategy).

In the responsive equilibrium:

uf = pg+ ¢*(1—p) + [p(1 — q) + (1 — 9)*(1 — p)]VE.

Taking the derivative of this expression with respect to p yields:

Which is increasing when V¢ > —1 and decreasing when V¢ < —1. B

Proof of Proposition 3: Shared understanding has value only in the RR Responsive
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equilibrium in the supermodular case where V¢ > —1. Thus, we need to show that
when V¢ > —1, d%uRR is increasing in p in the relevant domain where ¢ > 7 > % As

seen in the proof of Proposition 2,

duRR
dp

=q(1—q)[1+V°].

Taking the derivative of this with respect to g yields:

duRR
dpdq

which is decreasing when V¢ > —1 and ¢ > % |

Proof of Proposition 4: w4 =7+ (1 — 7)VY and uf'f = pg+ (1 — p)g® + [p(1 —
q) + (1 —p)(1 —¢)2]VC. The difference, u*4 — uf*%, can be directly shown to decrease

in ¢ and p and increase in V¢ or 7. B

Proof of Proposition 5: In the main text, we noted that for meetings to be preferred

over the responsive equilibrium, it must be the case that
m < 2q(1— q)(1 — p)[r + (1 — m)VEY.

For meetings to be preferred to the AA-unresponsive equilibrium, it must also be the

case that
m < [(1—m)a(g) —mB(q))(1 = V),

where a(q) = pq+ (1 —p)q?® is the probability of coordinating on the correct state with
the correct signal and B(q) = p(1—¢q)+ (1 —p)(1—q)? is the probability of coordinating
on the wrong state.

We have defined m* to be the m such that one of these constraints bind with
equality. Thus, we simply need to see how the signs of these two constraints change in

response to changes in the parameters. Let

B™(q,m,VC,p) = 291 —q)(1 = p)[r+ (1 —m)V]
BM(q,m, VY p) = [(1-malg) —B(g)](1-VE)
be functions that represent the right-hand side of the two inequalities above. All the

comparative statics in the paper arise from taking the derivative of these functions

with respect to the parameters of interest:

1. %%RCR =(1-p)2¢(1—¢)(1—m) >0 and 8£/ACA =—[(1—-m)a(q) —7B(q)] < 0. The
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second inequality holds since (1 — m)a(q) > w5(g). This is because (1 — 7)a(q)
is increasing in ¢ while 73(q) is decreasing in ¢. It follows that the inequality is

hardest to satisfy when ¢ = 7. When ¢ = 7, the inequality becomes
(1= m)lom + (1= )] > 7lp(1 —m)] + (1 — p)(1 — 7)?

which reduces to # > 1 — 7. By the assumption that = > %, it follows that it is
indeed the case that (1 — m)a(q) > 78(q) and thus %E‘g/ACA < 0. Thus statement
(1) of Proposition 5 holds.

. AA
2. ag;m =2(1-2¢)(1 —p)[r+ (1 —m)V] < 0, since ¢ > 3. Further, agq =
(1=VOY[Q—m)p+2(1—p)g+7[p+2(1—p)(1—q)]] >0. Thus statement (2)
of Proposition 5 holds.

3. ag:R = 2¢(1 — p)(1 — ¢)(1 — VE) > 0, since we are focusing on cases where

V¢ > —1. Further, 8§2A = —(a(q) + B(¢))(1 = VY) < 0. Thus statement (3) of
Proposition 5 holds.

AA
4. 9B = —[29(1—q)(n+(1-m)VE)] < 0and 2572 = (1-VE)[(1-27)q(1—q)] < 0.
Thus statement (4) of Proposition 5 holds.

5. limg1 BR®(q, 7, V%, p) = 0 and limyc_,, B4 (q, 7, V®, p) = 0. Thus statement
(5) of Proposition 5 holds.

[ |
Proof of Lemma 1: It must be the case that 72(w, VC) is the meeting cost beyond
which the team surplus under meetings is always below that under the responsive equi-
librium. Previously, we showed that %;’”’Vc) > 0 and %(Zw,vc) < 0. There-
fore, this means that, for a given meeting cost m, the maximum value of s™ (p, ¢, T, VC)
is when p = 0 whereas the minimum value of s*%(p, ¢, 7w, V) is when p = 0. As such,
for a given meeting cost m, the difference A = sM(p, ¢, m, VE) — s%(p, ¢, m, V) is the
largest when p = 0.

Using the envelope theorem, the derivatives of s™ (p, ¢, m, VY) and s®%(p, c, 7, V©),

respectively, with respect to ¢ are given by

0sM(p,c,m, VO)
Oc

dsT™(p,c,m, V)
oc

=-2 [IM(p, c,, Vc)}2 and = —Q[IRR(p, c,, Vc)r.

The derivative of A = sM(p, ¢, m,VE) — s (p, ¢, 7, VC) with respect to c is given by:

A M C RR C 2 2
08 _9s7(pem VD) 9sTpem V) (IRR(p,c,w,VC)> —<IM(p,c,7T,VC>

e Oc Oc

BIRR(p7cv7T7VC) < 0 81]”(:070771-7‘/0)

Recall that we have Bp ; op

> 0 and that when p = 1 we have
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IRR(1,¢,m,VC) = IM(1,¢,m,VY). Then, this means that we have I*%(p,c, 7, V%) >
M(p,c,m, V) Vpel0,1]. As a result, we have % > 0 Vp € [0,1]. This implies that
A is maximized as ¢ — co. But as ¢ — oo, we have I™® — 0 and I™ — 0. As such,

as ¢ — oo we have that
A0, ¢,m, V) = sM(0,¢,m,VE) = sBE(0,¢,m, V) = dn(1 — 7)[x + (1 = m)VE] — m.
Setting the above to be equal to 0 yields
dr(l—nm)[r4+ (1 -7V —m =0,

which gives us m(, VC) =4dr(1l—m)[r+ (1 - W)VC]- u

Proof of Proposition 6: The key question is how the manager’s payoff in the
responsive equilibrium varies with p, taking into account the effect on information
investment. At the I = 1 — 7 boundary, information is perfect, and there’s no effect
from varying shared understandings. When information investment is in the interior,

the effect of increasing shared understanding on the manager’s payoff is given by

o ORR
dp

8ORR(p7 T, Cy VC) aIRR(p7 T, C, VC)
OIRE(p,7,c,VC) dp ’

(15) —(r+D1-7-DA+VS+
where the first term is the direct increase in expected output that is due to a change
in p and the second term is the indirect adjustment that the team makes when p is

8ORR(p77T707VC) d BIRR(pvﬂ-vcvvc)

changed. Based on the analysis in section 3.3, AFE (e V) 0 an 8y <

0. Thus, the second term is negative. Further, there exists a low valued ¢ where
I®R(p, 7, ¢, VC) =1 — 7 but where %{TC’VC) is negative. At this ¢, equation
is negative. Likewise, as ¢ — o0, %;,c,vc) — 0 and I7R(p,7,c, V) =~ 0. At
this point, the expression is strictly positive. In between, the magnitude of the second
term becomes smaller as ¢ increases and thus, there exists a single cutoff ¢ where the
manager’s payoff switches from decreasing with p to increasing with p.

Having characterized the shape of the manager’s payoff, we have shown that there
will exist a cost where the manager switches from minimizing shared understanding
subject to the team choosing the RR equilibrium to maximizing shared understanding.
In order to show that this switch point is unique,it is sufficient to show that the

(negative) impact of ¢ on output is decreasing in p. This is equivalent to showing that

a;‘p’gf is positive. Taking the derivative of |15| with respect to ¢ yields:

82 ORR
Opdc

8IRR(p7 T, C, VC) aORR(pa T, Cy Vc) 6QIRR(p7 T, Cy VC)
dc OIRE(p e, V) dpdp

= (1-2(z+1))(1+V%)
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The first term is positive since m > .5 and information is decreasing in c¢. The second

term is also positive since

8IRR e 7V'CV 8IRR , ,,VC
PIRR(p, 7,0, VC)  —2(1 4 V) S Gret) — gt (pRels)

Opdc B 2c—2(1—p)(1+VC)

and (i) both terms in the numerator are positive and (ii) the denominator is positive
when teams are not fully informed.

Since the cross-derivative is positive, a manager who finds it optimal to maximize
shared understanding for a given ¢ will also wish to induce this shared understanding
for all larger ¢. As such, the arguments in the text are sufficient to complete the propo-

sition. W

Proof of Proposition 7:

As discussed in the text, the expected output of a meeting is decreasing in p holding
the amount of information fixed. However, information is increasing in p, Thus, the
overall output of a meeting can be increasing, decreasing, or decreasing in p and then
increasing.

Next note that output in the RR equilibrium is identical to the output in a meeting
when p = 1. Thus, while a manager can never induce a meeting with p = 1, she can
always induce the same output by setting p = 1 and having the team select the RR
equilibrium. As such, it will never be optimal to implement a meeting when the overall
output of a meeting is increasing in p since output will be dominated by implementing
the RR equilibrium with p = 1. It follows that the only optimal policy that involves a
meeting will be one where the manager chooses p = 0.

Given that the optimal policy with a meeting will always involve a p = 0, it remains
only to identify the optimal policy as ¢ increases. Identical to Proposition 6, output
in the RR equilibiurm is decreasing in p for low ¢, decreasing and then increasing for
moderate ¢, and increasing for high ¢. Thus, for low ¢, the manager wishes to select
the lowest p subject to the team not choosing a meeting, this cutoff is p(c, , VC). In
the quadratic region, there will be a cost where the output for implementing the RR
equilibrium at p(c, 7, V) will be the same as the payoff for choosing p = 1. This
cost cutoff is &(w, V¢). Note that, as shown in the proof for Proposition 6, since the
(negative) impact of ¢ on output is decreasing in p, the switch from p(c, 7, V) to p = 1
is unique, and the manager never switches back to p(c,m, V).

Finally, there will be a cost where meetings are optimal. This cutoff is ¢™ (7, V©).
Once c exceeds ¢V (7, V), the manager chooses meeting with p = 0 and never switches

back to the RR equilibrium. In order to show that this switch is unique, it is suffi-
20M (0, ¢, 7, VE) 2o (1, ¢, m, V)
> .

dc dc

cient to show that Taking the derivative of
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oftR(1, ¢, 7, V) with respect to c¢ yields:

doltE(1, ¢, 7, VC 1 -V
Lamv®) __U=VF _; ey

OIRR (1, ¢, 7, VC)
oc

<0,

where

RR c
O1" (1, e,m, V) _ _}[RR(LC,W,VC).
oc c

The derivative of 0™ (0, ¢, 7, V) with respect to c is given bym

M My11,C c M orM
{2[7r+1 | =21 — (m+ IV =2+ (1 —m)VY)[2(n + T )_1]}. o
where
oIM(0,¢,m, V) 1
Oc T e+ @2r—1)(1 -V IM(0,¢,m, VE).

observe that

1-VE>2m+ M) =21 — (m + IV —2[n + (1 — m)VO][2(x + IM) — 1]

e 1- 2 +IM)-1]VY > 2(n + IM) = 2[n + (1 — m)VO)2(n + IM) — 1]
-2+ 1] - 2(r+ ") - 1)VE > <2[r + (1 — m)VE][2(r + IM) — 1]
& —[2(r + M) =11+ V) > —2[r + (1 — mVO][2(n + IM) — 1]
S2Ar+(1-m)VY >14+VC

s1>VC,

which is always satisfied, by our assumption that V¢ < 1. In addition, since m > %

we also have that M (0, ¢, 7, VC) < I7E(1, ¢, 7, V) and BIRR(la’z’W’VC) < MOV

dc
M C RR C
90" QemVD) o, o (16’2’7“‘/ ). Lastly, since

As a result, it is indeed the case that

M C RR C
6;;5: > 0, then this means that 2 (0’5’:"/ )5 0 (pgf’v ) Vp € [0,1]. That is, once

c exceeds M (7, V?), the manager always chooses team meeting with p = 0 and never
switches back to the RR equilibrium with p(c, , Vc). |

Proof of Proposition 8:

As noted in the text, it can be the case that ¢ (7, V®) < &(x,VY) < &(m, V).
As illustrated in Proposition 7, o™ (p,c, 7, V) is increasing in p for low values of c,
convex in p for intermediate values of ¢, and decreasing in p for large values of c.

When the cost of information ¢ exceeds é(m, V), the manager switches from the RR

M 0,¢,x,vY) .

. M
1"To reduce notation, I refers to I (0, ¢, n, V) and %I—C refers to 5
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equilibrium with p(c, 7, V®) to team meeting with p = 0. From Proposition 6 and

M C RR C
7, we showed that 8;;5: > 0 and that 22 (Oécc’ﬂ’v ) 5 Do %Z’”’V ) then this means

that once the manager switches to the team meeting, the manager always chooses the

team meeting with p = 0 for larger ¢ and never switches back to the RR equilibrium. B

Remark: In the main text, we argued that the case described in Proposition 8 is

most likely to occur when 7 is small. To illustrate this, it is sufficient to show that

20 (1, ¢, m, V) 90M(0,¢,7,VE)

on B on > 0.

First, note that

where the inequality is due to our assumption that V¢ < 1. Next, we derive the

derivative of the output with team meeting with respect to m, which is given by:
oM
on
+ 2(1 - Vc)[ﬂ- + IM(O’ ¢, Vc)][l - (7T + IM(07 ¢, VC))L

where

oIM (0, ¢, m, V) I ¢ -V9)@er-1) 4(1 -V9) M0, e m V) <0,
O 2 +2(2m — 1)(1 — VC)] [20-1— 2021 — 1)(1 — VC)] Y

In addition, we show that the expression in the bracket is positive.

20+ IM) =201 — (m + IMWVC = 2[r + (1 — M)V 2(r + TM) = 1] > 0
& 2r(1—m) > IM0,¢,m,VO)(2r —1)

4r(l —7)(1 = V)
2c+2(2r — 1)(1 — VO)

<2l —m) > (2 —1)

Sc+2r—1)1 -V > @2r—1)(1-VO)

& c>0,

which is always satisfied. Finally, since (m 4+ I*(0,¢,m,V)) € (3, 1], then this implies

that we have

201 = V) [r + 10, ¢,m, V][I — 7 — IM(0,¢,m,VE)] <1 -V,
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As aresult, it is always the case that the derivative of the team output under responsive

equilibrium with respect to 7 is larger than that of team meeting.

Lemma 2 1. An AA Unresponsive strategy yields payoff Uas = 7 + (1 — m)VC
and is efficient iff

pg+ (1—p)g® —m

C
J s ey s s T s o1

2. An AB Unresponsive strategy yields payoff Uap = 0, and it is efficient iff

ve< - —(1% q)(max{l W’p+[)(T lppl q)})

3. A Partially Responsive strategy yields payoff Uag = mq + (1 — m)(1 — q)V©,
and it is efficient iff ¢ < l%p and

4. A Responsive strategy yields payoff Urr = pq + (1 — p)g® + (p(1 — q) + (1 —
p)(1 =) VC and is efficient everywhere else.

Proof: To prove part 1 of this lemma, note that when the AA Unresponsive equilibrium
exists, the RR equilibrium also exists. Thus, to identify the cases where it is efficient,
we simply need to compare the payoffs in this equilibrium to the payoffs in the RR
equilibrium.

In the AA Unresponsive equilibrium,
uM =71+ 1-mV°
while the utility in the RR equilibrium is
u™ = pg+ (1= p)g® + [p(1 — q) + (1 = p)(1 — ¢)*]VE.
It follows that the AA Unresponsive is efficient if
T+ (1 =mVE = pg+(1—p)g®+ [p(1—q) + (1 —p)(1 —q)*]VE,
or, equivalently

pg+(1—p)g®>—7
(1-—m) = [p(l—q) + (1= p)(1 —¢)?]

When the AB Unresponsive equilibrium exists, the RR Responsive equilibrium also

Ve >

exists. Thus, to identify cases where the AB Unresponsive equilibrium is efficient, it is
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sufficient to find the region where the AB Unresponsive equilibrium exists and where
it has a higher payoff than the RR equilibrium. The AB equilibrium always yields a
payoff of zero. Thus, it has a higher utility to the RR equilibrium when

0> pg+(1—p)g* + [p(1 = q) + (1 = p)(1 — 9)*]VE.
Rearranging, This occurs when

c_ 4 p+t(d-p)g
e e E S (R [ (=

As seen in Proposition 1, the AB equilibrium exists only if

vo<- 1 T

1—ql—7

Putting these two constraints together yields the bound in part 2 of the lemma.
Finally, the Partially Responsive equilibrium is the unique equilibrium in its region.
As such, it is efficient. Likewise, it can be shown that all other equilibria are dominated
by one of the four equilibrium discussed (see Lemmas 3-8 in the supplementary ap-
pendix). Thus, the RR equilibrium is efficient in the remaining parts of the parameter

space. H
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A.3 Dominated Equilibrium [Supplementary Appendix]

This supplementary appendix describe additional BNE that exist in our, but that are

dominated by the four BNE that we concentrate on.

Lemma 3 Define the FF Responsive strategy profile as one where both players play
the action that is opposite to the signal. There exists a BNE where each player uses
this strategy profile. However, it is dominated by the BNE where both players use the
Responsive strategy profile.

Proof: The FF Responsive equilibrium will exist if, when the other player is flipping

their signals,

(16) U(Als = B,F) > U(B|s = B, F)
and
(17) U(B|s=A,F)>U(Als=A,F).

Equation holds if:
7 PE(F) + (1 —7p)PE(F)VC > 7p(1 = PE(F))VE + (1 - 75)(1 - PE(F)).

When the other player flips their signal:

Thus, when p = 1, equation holds if:
7TB+(1—7TB)VC > 0.

This is satisfied for V¢ > —12E— for any ¢ > 0.5.

TB

Equation [I7] will be satisfied if and only if:
ra(l— PAFNVE + (1 = ma)(1 — PE(F)) > maPA(F) + (1 - m) PB(F)VC.

When the other player flips their signal:
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When p = 1, equation holds if:

TAVE 4+ (1 —7a) >0

Thus, F'F' responsive is an equilibrium when shared understanding is very high and

the value of coordination V¢ is such that V¢ > —%.

We now show that while the FF Responsive equilibrium exists, it is dominated by

RR Responsive. In each state:

= pg+ (1= p)IVE + [p(1 — q) + (1 - 9)*(1 - p)]
W= [pg+ (1= p)]+ (1 —q)+ (1 —q)*(1—p)VE

Thus,
uff = = 1=V [[pg + (1 = p)] — [p(1 — @) + (1 — 9)*(1 - p)]].

Noting that ¢ > m >= 0.5, [pg + ¢*>(1 — p)] > [p(1 — q¢) + (1 — ¢)?(1 — p)] and V¢ < 1,

the difference is weakly positive. Bl

Lemma 4 Define the BB Unresponsive strategy profile as one where both players
play the action B regardless of their signal. There exists a BNE where each player uses
this strategy profile. Howewver, it is dominated by the BNE where both players use the
AA Unresponsive strategy profile.

Proof: Let V¢ =1 and p = 0. Then,

UB|s=jB) = 1,
U(Als=j,B) = 0,

and U(B|s = j,B) > U(A|s = j,B) for ¢ < 1. By continuity, there exists a set of
parameters for which the BB unresponsive strategy is part of a BNE. Specifically, it
holds when V¢ is such that V€ > _(=mp)

TB

To show that the BNE involving the BB unresponsive equilibrium is dominated by

AA unresponsive, note that

Wt = 1+ (1 -mV°

uPP = v (1-m),
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and that
ut —uBB = (2r - 1)1 -V >0
where the inequality follows from the assumption that = > 0.5, and V¢ < 1. W

Lemma 5 Define the RF Responsive strateqy profile as one where one player follows
their signal and the other one plays the action that is opposite of the signal. There exists
a BNE where each player uses this strategy profile. However, it is dominated by either
the BNE where both players use the AA Responsive strategy profile or the BNE where
both players use the AB Unresponsive strategy profile.

Proof: For strategy R to be an agent’s best response to the other agent playing

F, the following two conditions must hold:
U(Als=A,F)>U(Bls=A,F).
and
U(B|ls=B,F)>U(A|s= B, F).
The first equation is equivalent to
TAPA(F) + (1 = ma)PY(F)VE > ma(l = PA(F)VE + (1 = ma)(1 = PL(F)),

where P4(F) = (1 —p)(1 —q) and P2(F) = (1 — p)g. Substituting P4 (F) and PZ(F)
yields:

ma(l=p)(1—q)+ (1 —ma)(1 = p)gVC > mall = (1 = p)(1 = @IV’ + (1 = ma)[1 — (1 - p)g].

When p = 1, this condition becomes m4VY + (1 — m4) < 0 and is satisfied when

Ve < _oma)
< -2

The second equation is equivalent to
wpPE(F) + (1 —7p)PE(F)VC <7p(1— PE(F))VS + (1 —75)(1 - PE(F)),

where PZ(F) = p+ (1 —p)(1 —q) and PE(F) = p+ (1 — p)g. Substitution of P§(F)
and PE(F) gives

melp+ (1 —p) 1=+ (1 —7p)p+ (1 —pgV’ < mpl—p—(1-p)(1—q]V°
+(1 =7p)[1—p—(1-p)
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When p = 1, this condition becomes 75 + (1 — 75)V® < 0, which is satisfied only

when V¢ < — B Therefore, the binding constraint for strategy R to be optimal is

l-7mp

Ve < _1:?3’ since 1 — a4 < mp.

We now show that it is also possible for F' to be a best response to the other agent
playing R when p = 1 and V¢ < min (— T4 —@). For F' to be a best response,

11—y’ B

it must be the case that
U(Als=A,R) <U(B|s=A,R)
and
U(A|s=B,R) > U(B|s = B,R)
The first equation is equivalent to
TAPA(R) + (1= ma) PE(R)VE < ma(l = PA(R)VE + (1 - ma)(1 — PY(R))

where P4(R) = p+ (1 — p)g and P¥(R) = p+ (1 — p)(1 — ¢). This is equivalent to

requiring that

malp+ (L= p)g)+ (L =ma)lp+ (1= p) (1= q]VS < mall—p—(1-p)gVC
+(1=ma)[l=p—(1-p)(1—q)]

When p = 1, the condition becomes w4 + (1 — 74)VC < 0, where this is satisfied if

V(7< __TA
— 1—ma

The second equation is equivalent to
T Ps(R) + (1 - 7p)PE(R)VC > mp(1 — PF(R))V + (1 — mp)(1 - P§(R))

where P4 (R) = (1 — p)q and P5(R) = (1 — p)(1 — q). Substituting P#(R) and PE(R)
yields:

(1= p)g+ (1 —7p) (1= p)(1 =gV > 7p[l - (1= p)g]V’ + (1 —mp)[1 - (1 - p)(1 - q)].

When p = 1, this condition becomes mgV® + (1 — 7wg) < 0, which is satisfied when
Ve < —(1;723). Therefore, strategy F' is a best response to the other agent playing

strategy R if V¢ < —1f'7“rA, since m4 > 1 — 7p.

It follows from the four cases above that when p = 1, there exists a BNE where RF

is the strategy profile employed by the two parties when V¢ < — 1f;‘rA, since m4 > mp.

We now show that this PBE is always dominated by either the AB Unresponsive
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equilibrium or the AA Unresponsive equilibrium. The team’s payoff in the AB unre-

sponsive equilibrium is 0 while the payoff in the AA unresponsive equilibrium is given
by

' =74 (1 -mVC.
Further, the team’s payoff if the strategy profile RE Responsive is played is
u = g(1=p)(1—g)(1+ V).
Hence, we have that
u = =VO[(1—7) = (1= p)(1 = q)q] + [7 = (1= p)(1 — q)q].

This difference is larger than 0 when V¢ is such that

o [ m-(-p-qq
= ((1—w>—<1—p><1—q>q>

where the expression on the right-hand side is smaller than —1.

The team’s payoff when both agents play the REF Responsive strategy profile, utf,
is smaller than 0, which is the team’s payoff for AB Unresponsive equilibrium, when
V¢ is such that

1-p)(1—q)(1+V)g<0

which holds if V€ < —1. Therefore, we have shown that for all values of VC, the RF
Unresponsive equilibrium is either dominated by the AA Unresponsive equilibrium or

the AB Unresponsive equilibrium. W

Lemma 6 Define the BF Responsive strategy profile as one where one player chooses
action B and the other one plays the action that is opposite of the signal. This strategy
profile does mot form a part of a BNE since the player playing F always prefers to
change strategy.

Proof For F' to be a best response to B it must be that
U(B|ls=A,B) > U(A|s= A, B)
and

U(Als = B, B) > U(B|s = A, B)
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Noting that U(B|s = A,B) = 7aV% + (1 — 74) and U(A|s = A, B) = 0, the first

equation is equivalent to:

1—
7TAV0+(1—7TA)20=>VCZ —w
TA
Likewise, the second equation is equivalent to:
1 —
0> 7pVC 4+ (1—mp) = V€ < ~L=T8)
TB

Thus, for one player to play F, V¢ (—oo,—(l_WB)] N [—(1_7r“‘),1], which is not

B TA
possible. Therefore, we have shown that there is no value of V¢ for one of the agents

to play F' as a best response to the other agent playing B. B

Lemma 7 Define the BR Responsive strategy profile as one where one player chooses
action B and the other one plays the action that corresponds to their signal. This strat-
eqy profile does not form a part of a BNE since the player playing B always prefers to
change strategy.

Proof: Consider first the agent who plays R. For the strategy R to be a best response
to the other agent playing B, it has to be the case that

U(Als=A,B) > U(B|s=A,B)
or, equivalently
TAPY(B) + (1 =) PE(B)VE > ma(1 — PA(B)VEC + (1 — ma)(1 — P{(B))

where P%(B) = 0. Therefore, the condition simplifies to 74V + 1 — 74 < 0, which
requires that V¢ < —%. In addition, for the strategy R to be a best response to
the other agent playing F', the following condition has to also hold:

U(Als=B,B) <U(B|s= B, B)
which is equivalent to
mpPE(B) + (1 —7p)PE(B)VE < mp(1 — P5(B)VE + (1 —7p)(1 — PF(B))

where PZ(B) = 0. Therefore, the condition reduces to VY + 1 — g > 0, which
requires that V¢ > —%. In sum, for the strategy R to be a best response to the

other agent playing B, VC must be such that VC ¢ | — U=78) _ (=ma) |

T TA
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Now, consider the agent who plays the strategy B, given that the other agent is
playing the strategy R. For the strategy B to be a best response to the other agent
playing R, the following condition has to hold:

U(B|s=A,R)>U(Als=A,R)
which is equivalent to
ma(1 = PL(R)VY + (1 —m4)(1 — PE(R)) > maPH(R) + (1 — ma) PR (R)VE

where P4{(R) = p+ (1 — p)q and P¥(R) = p+ (1 — p)(1 — q). Therefore, substitution
of P{(R) and P} (R) yields

mall=p—=(1=p)gVe+ (1 —7a)[1=p—(1=p)(1 =) > 7malo+ (1= p)gl + (1 —ma)lp+ (1 - p)(1—q)]
Moving all the terms to the left hand side gives us:

TAll=p—(1=p)gVE+ (1 =m0l —p— (1= p)(1 — )] — 7alp + (1 — p)q]
—(1=ma)lp+ (1 -p)(1 - gV’ >0

Expanding the brackets yields:

mall—p—(L=p)gVE+[1—p—(1—p)1—q)]+mal(1—p)(1—q) — (L= p)] — malp+ (L — p)q]
—lp+(1=p)A =V +malp+ (1 - p)1—]V7 >0

Collecting the 74VC and 74 gives us:

Ve (1= p—(1=p)a+p+ (1= p)(1 =) +ma[(1=p)(1 =) = (1= p) = p— (1= p)d]

+1-p-=p-q] - [p+1-p0-a|V=0

Further simplification yields:

VO (1= (1= p)g+ (1= p)(1 = )] +7a[ = 1= (1= p)a+ (1 - p)(1 - )]

+1-p--pu-g|+|-p-0-pa-0|vi=0

= mA(VE =D+ ma (1= p)(1=q) = (1= p)g| (VO +1) + 1= [p+ (1= p)(1 - )| (VC+1) 2 0
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As an aside, note that m4 can be written as follows:

q _ 1—q
Tq+(1-m1—-q) 1+4752¢-1)

TA =

Hence, by substituting 74 in the equation above, we obtain:

( 1 ){ ™ (yC 1) 7Tq[(1_p)(1—q)—(1—p)q](Vc+1)+(1—1—1:](2‘]—1))

1+ 75 (2¢ - 1) 1—g¢q 1—g¢q

- (1 (- 1)) o+ =p)1-0)| (v + 1)} > 0
Further simplification reduces the condition to

>0

1 s
<1+1’_fq(2q— 1)) [1 _q<Vo_ (VC“)‘J) +1-[1—q(1=p))(VE+1)

Observe that the denominator is always strictly positive. Therefore, the overall
sign of the above expression is determined by the sign of the numerator. We have to
consider two cases, the first in which V¢ < —1 and the second where V¢ > —1. For
the first case, observe that the coefficient on p is positive. Thus, the numerator is
increasing in p. Therefore, for a given value of V¢, the largest possible value of the

numerator is when p = 1. In this case, the numerator is equal to

mq

—(1-m)V° -
e

which is decreasing in V¢. Recall that, from above, V¢ € [— (1;23 ),—(1;:“‘)] and

so the smallest possible value of V¢ is —%. When V¢ = —(1;7?, the above

expression is equal to:

q

_ T 22
gl =) <0

where the inequality follows from the assumption that = > %

Now, consider the second case in which V¢ > —1. In this case, the coefficient on
p is negative. Hence, the numerator is monotonically decreasing in p. Therefore, for a
given value of V¢, the largest value of the numerator is when p = 0. When p = 0, the

numerator is equal to:

™

1_q[Vc—q(Vc—i-l)]+1—(1—Q)<V0+1)
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which simplifies to

1—g¢q

v0<w—<1—q>>+q(1‘q‘”).

Observe that this expression is increasing in V¢, since 7 — (1—g) > 0. Recall that the

largest value for V¢ is — (1;:“). When V¢ = —%, the expression is equal to
1—m)(1-— l—qgq—m
_[( )1 —4q) (W_(l_q)Hq[ q }
mq ™q

which is always negative, by that the assumption that ¢ > 7 > % Therefore, we have
shown that for values of V¢ that one agent has the incentive to play Responsive R
strategy, the other player has the incentive to deviate from playing the Unresponsive

B strategy when the signal is A. W

Lemma 8 Define the AF Responsive strategy profile as one where one player chooses
action A and the other one plays the action opposite their signal. This strategy profile
does not form a part of a BNFE since the player playing F always prefers to change
strateqy.

Proof: Consider the agent playing the strategy F'. For playing strategy F' to be a best
response to the other agent playing A, it has to be the case that

U(Als=A,A) <U(B|s=A4,A)
and
U(Als=B,A) > U(B|s = B, A).
The first equation is equivalent to
TaPA(A) + (1= 1) PY(AVE < ma(l = PA(A)YVE + (1 - ma)(1 — P (A))
where P{(A) = 1. This simplifies to

7TA—|—(1—7TA)VC§0

which requires that V¢ < — i—2—. The second equation is equivalent to
A

wpPj(A) + (1= mp) PE(AVE = mp(l = PFA)VE + (1 —mp)(1 - PF(A))
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where we again have PZ(A) = 1. This condition can be simplified to

7TB+(1—7TB)VCZO,

which requires that V¢ > — lfﬁs. Noting that — lfﬁB > -1 > — lf;‘rA, both
conditions cannot be met simultaneously and thus there does not exist parameters for

which F' is a best response to A.l
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