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Abstract

Previous literature has shown that private information is a transaction cost that prevents
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1 Introduction

The Coase Theorem provides the essential insight that any efficiency rationale for government
intervention must be based on transaction costs. Absent such costs, the allocation that results
from mutually beneficial trade will be efficient irrespective of initial ownership.

The mechanism design literature has shown that private information may constitute such a
transaction cost. In particular, the path-breaking work by Vickrey (1961) and Myerson and Sat-
terthwaite (1983) provides conditions under which efficient trade between privately informed buyers
and sellers is impossible without running a deficit. While subsequent work by Gresik and Sat-
terthwaite (1989), McAfee (1992), and Williams (1999) has expanded our understanding of these
conditions, the literature has largely focused on homogeneous goods with single-unit demands and

1 Given the role that the Coase Theorem plays in economics, understanding the condi-

supplies.
tions under which secondary markets cannot be expected to operate efficiently is of fundamental
relevance.

In this paper, we derive conditions under which the impossibility of efficient trade extends
to rich environments in which buyers and sellers demand and supply packages of heterogeneous
objects and in which both buyers and sellers can trade with multiple agents on the other side of the
market. In line with the strand of literature on the impossibility of efficient trade mentioned above,
we assume private values throughout the paper. However, in contrast to most of this literature,
we allow for multi-dimensional types.?

Our approach is both general and intuitive. We begin by synthesizing the literature and by
showing a surprising connection between the known impossibility theorems and a result due to
Shapley (1962). Shapley’s result implies that when trading is one-to-one, any buyer and any seller
are complements under surplus maximization—the buyer’s marginal product is larger when the
seller is present than when he is not and, analogously, the seller’s marginal product is larger when
the buyer is present than when he is not. This complementarity turns out to have important
consequences when the values of buyers and the costs of sellers are private information and there
exist least efficient types who should never trade: a key insight from the Vickrey-Clarke-Groves

(VCG) mechanism and the literature on dominant strategy implementation is that truthful reve-

Two exceptions are Vickrey (1961), who allows for many traders with multi-unit demands and multi-unit sup-
plies of a homogeneous good, and Hurwicz (1972), who addresses the problem of implementing a Pareto efficient,
individually rational allocation in dominant strategies in a general equilibrium model without quasi-linear payoffs.

It is well known that with interdependent values and multi-dimensional types, efficient, incentive compatible
allocations may be impossible, with or without running deficit; see, for example, Jehiel and Moldovanu (2001).



lation of private information is possible if and only if each agent receives his marginal product as

3 Because the market maker can extract only the social gains from

a transfer (plus a constant).
trade associated with a reallocation, but must pay each agent his marginal product to reveal his
information, efficient trade is impossible without running a deficit when the sum of the marginal
products exceeds social gains from trade.? Shapley’s result thus implies the impossibility of efficient
trade for any two-sided allocation problem with one-to-one trading because the complementarity
between buyers and sellers implies that the sum of marginal products always exceeds the social
gains from trade.’

Building on this insight, we extend Shapley’s result to develop a new impossibility theorem
that applies to environments in which buyers can buy and sellers can produce multiple objects and
in which buyers and sellers can trade with multiple agents on the other side of the market. We say
that a buyer is decomposable if his utility function is an assignment valuation, as defined by
Ostrovsky and Paes Leme (2015), and extend the concept to sellers.5 The term “decomposable”
refers to the fact that such an agent can be decomposed into unit constituents who can be
assigned at most one object. Obviously, this is possible if an agent’s payoff function is additive
in the stand-alone values associated with each object. However, decomposability is substantially
more general than that and includes, among other setups, the seemingly unrelated homogeneous
goods model with decreasing marginal values and increasing marginal costs.

We show that a two-sided allocation problem is assignment representable—that is, it can
be represented as an assignment game between unit constituents and objects—if and only if every
agent is decomposable. We then extend the results of Shapley (1962) to show that efficient trade
is impossible in any assignment-representable problem.

We also introduce a new family of payoff functions satisfying what we call size-dependent
discounts (SDD): Under SDD, an agent’s valuation for a package of objects consists of the sum of

the stand-alone utilities of these objects minus a discount that depends on the size of the package

3As is well known, the VCG mechanism is an efficient mechanism that endows agents with dominant strategies.
It is due to the independent contributions of Vickrey (1961), Clarke (1971), and Groves (1973). The richness of
the environment in Groves (1973) does not permit dominant strategies, but the mechanism developed there endows
agents with such strategies in simpler environments such as the ones studied in Groves and Loeb (1975) or here.

4We follow the literature in referring to “allocation problems” even though, in a sense, these are “reallocation
problems.”

Loertscher, Marx, and Wilkening (2015) invoke Shapley’s (1962) theorem to prove the impossibility of trade in
allocation problems with one-to-one trading and homogeneous goods. Among other things, we extend this to all
environments with one-to-one trading, without any restriction on the nature of the objects that are traded.

50ur concept of decomposition can be extended to a setting such as the one studied by Yenmez (2015), where
each agent is endowed with a package of objects and can sell some of them, buy other objects, or both.



but not on the objects. We show that SDD is sufficient for decomposability.” This family includes
all payoff functions with unit demand and unit supply, the homogeneous goods model with multi-
unit traders, additive payoffs, a version of Ausubel’s (2006) heterogeneous commodities model with
additively separable payoff functions, and any problems involving a mixture of agents with payoff
functions of these forms.

Viewed from this angle, our results thus provide the unifying and, to our knowledge, novel
insight that the underlying force behind the impossibility of efficient trade in the two-sided allo-
cation problems of Vickrey (1961), Myerson and Satterthwaite (1983), Gresik and Satterthwaite
(1989), and McAfee (1992) is that the payoff functions satisfy SDD. Of course, our results also
imply that efficient trade with privately informed agents is impossible in the assignment game of
Shapley and Shubik (1972), which is popular in the literature on matching with transfers, but has
received relatively little attention in the mechanism design literature.

By providing a general and intuitive impossibility theorem for two-sided allocation problems
under conditions that are easy to check because they relate to individual agents’ payoff functions,
our paper highlights the transaction cost that results from agents’ strategic use of their private
information about values and costs in two-sided settings. Beyond their implications for economics,
along the lines discussed in the opening paragraphs, these results also emphasize a general tension
between revenue and efficiency faced by market designers in two-sided settings. Moreover, SDD
payoff functions are flexible and encompass as special cases payoff functions that are widely used
in the literature. Nonetheless, they impose limited burden for agents’ information acquisition, and
for communication and computation: the only pieces of information required from an agent are his
stand-alone utilities for each object and discounts for each possible package size. This contrasts
with allocation problems of heterogeneous objects, for which, absent additional structure, the
number of valuations required from every agent is equal to the power set of packages.® This makes
the SDD family of potential interest and value beyond the environments and problems we study
in this paper.

The literature on Bayesian mechanism design has predominantly focused on settings with one-

dimensional types, with little attention to the connection between allocation problems and as-

"To the best of our knowledge, none of the existing definitions of substitutability that have been used in the
literature is sufficient to ensure decomposability in general (see, e.g., Hatfield, Immorlica, and Kominers (2012) or
Hatfield, Kominers, Nichifor, Ostrovsky, and Westkamp (2017)).

8Put differently, with K objects the dimensionality of the information an agent is required to have is of order 2%
without additional structure and of order 2K with SDD.



signment games. An important implication of our approach is that a broad class of models are
assignment representable, including the two-sided market models of Vickrey (1961), Shapley and
Shubik (1972), Myerson and Satterthwaite (1983), Gresik and Satterthwaite (1989), McAfee (1992),
and a two-sided, additively separable version of Ausubel’s (2006) model with heterogeneous com-
modities. Rather than being disjoint and independent problems, we demonstrate and characterize
a connection among these models.”

In a recent paper, Segal and Whinston (2016) derive impossibility results that revolve around
tests for a multi-valued marginal core in allocation games with monetary transfers. Yenmez (2015)
provides necessary and sufficient conditions for the converse of the marginal core condition to
hold. The marginal core condition and its converse are useful in providing general conditions
under which the (im)possibility result holds but may be difficult to apply in practice. Our results
regarding assignment-representable problems provide a complementary approach for testing for
the impossibility of efficient trade. By generalizing the assignment model to accommodate package
demand and supply, we derive conditions based on the primitives of the model, namely the payoff
functions.

Many matching problems are also assignment representable and thus our paper connects to
the literature on matching with transfers. Initiated by Koopmans and Beckmann (1957), Shapley
(1962), and Shapley and Shubik (1972), with recent contributions by, among others, Bikhchandani
and Ostroy (2002), Echenique, Lee, Shum, and Yenmez (2013), Chambers and Echenique (2015),
and Choo (2015), the literature on matching with transfers has, beyond concerns of stability and
its relation to the core, paid limited attention to individuals’ incentives to reveal what is plausibly
their private information. We show that it is impossible to elicit such information without running

a deficit if there are least efficient types on both sides of the market that never trade.'® Yenmez

°In a recent paper that takes a bargaining (or robust mechanism design) approach to the problem of bilateral
trade with many items, Jackson, Sonnenschein, and Xing (2015) show that whether efficiency is possible depends
on whether the two agents bargain over all items at once or independently. The difference between the possibility
results that Jackson, Sonnenschein, and Xing (2015) obtain and the impossibility results derived here stems from a
difference regarding the following assumption: in line with Myerson and Satterthwaite (1983), we assume that for
every type realization of the other agent(s), an agent may be of such an unproductive type that it is efficient that
he does not trade at all, while the possibility results of Jackson, Sonnenschein, and Xing (2015) are obtained under
the assumption that the bilateral surplus over all items is positive for all type realizations for which the density is
positive.

10As Shapley and Shubik (1972) show, the core of an assignment game is always nonempty. Furthermore, core
payoffs are efficient. This extends to assignment-representable environments because each agent is a coalition of unit
constituents in the corresponding assignment game. However, we show that no dominant strategy mechanism exists
that achieves efficiency without running a deficit. Thus, we identify environments in which core payoffs exist but in
which it is not possible to elicit the information required to achieve them.



(2013) studies incentive-compatible matching with transfers and proves the possibility of efficiency
under the converse assumption that all types of all agents always trade.

From a modeling perspective, our paper extends the package assignment model of Bikhchan-
dani and Ostroy (2002) by introducing heterogeneity on the sellers’ side.!* Our impossibility result
implies that in one-to-one matching markets with transfers, no budget-balanced mechanism exists
that is strategy-proof when least efficient types exist that should always remain unmatched. Al-
though the settings differ, this result parallels Roth’s (1982) finding that in a marriage market,
in which there are no transfers, no mechanism exists that is strategy-proof for both sides and
generates a stable matching.

Our paper also relates to the literature on the micro-foundations of the canonical model of price
formation in markets. As first noticed by Arrow (1959), the Walrasian model is silent about the
institutions that simultaneously discover and set the market clearing prices. Recent contributions
by Satterthwaite, Williams, and Zachariadis (2014, 2015) have focused on the performance of
the k-double-auction in environments with unit traders, allowing for the possibility of correlated
types and interdependent values. Our work is complementary to this research agenda. We do
not restrict the mechanism that the market maker employs, other than imposing incentive and
individual rationality constraints, and we allow for a general trading environment apart from
imposing private values.

The remainder of this paper is organized as follows. Section 2 describes the setup. In Section 3,
we synthesize existing results to derive an impossibility result when it is efficient for all trades to be
one-to-one. Section 4 contains our new result that extends the impossibility result to setups with
many-to-many trading, provided that the allocation problems are assignment representable. In
Section 5, we characterize assignment-representable problems and show that an allocation problem
is assignment representable if all agents’ payoff functions exhibit size-dependent discounts. Section

6 concludes. Proofs are in the Appendix.

2 Setup

A two-sided allocation problem consists of B buyers b € B, S sellers s € S, and O objects o € Q.

Each buyer b can consume any package z, C Q. Let P := P(Q) be the set of all possible packages

1 Among other things, our paper generalizes the conditions under which buyers are known to be substitutes, which
is a property that is assumed to hold in parts of the analysis of Bikhchandani and Ostroy (2002).



that can be consumed and denote by P := 2° the cardinality of the set.!?

Let {Og}ses be a partition of @. Each seller has O4 objects o5 € Q4 and can produce any
package z, C Q. This implies that every object o € O can be produced by exactly one seller.'3
We call Oy the potential set of seller s and denote by Ps := P(Qs) the set of all possible packages
s can produce, whose cardinality we denote by Py := 295,

An allocation z = ((xp)peB, (zs)ses) corresponds to trades between buyers and sellers, where
xp is the package b receives and z, is the package s produces.'* An allocation is feasible if (i)
each seller produces a subset of his potential set: =3 C Oy for all s € S, (ii) each object that is
consumed has been produced: z C Ugeszs for all b € B, and (iii) each object is consumed at most
once: x, Nxy = & for any b, b’ € B with b # b'. Let X denote the set of feasible allocations.

Throughout, we use the term agent to refer to an individual that may be either a buyer or a
seller. We assume that types are agents’ own private information and are defined over the packages
that they produce or consume. This implies that a buyer b’s type v;, € RF is a P-dimensional
vector of values corresponding to each possible consumption package. A seller s’s type c, € R is
a Ps-dimensional vector of costs corresponding to each possible production package. Let V4, denote
the set of possible types for buyer b and Cs denote the set of possible types for seller s. The sets
V = IlpepVp and C := llzcsCs are the products of the sets of types, with typical elements v and
c. We assume that Vj, and Cy are closed and convex sets. Denote by v_; the vector of types of
buyers other than b and denote by (¥, v_p) the vector v with the type of buyer b replaced by ¥y.
We analogously define c_g and (&5, c_;) for sellers.

Buyer b’s total payoff takes the quasi-linear form w(xy, vy) — tp, where wuy, is buyer b’s utility
function, zp is the package the buyer receives, vy is his type, and ¢, is a monetary transfer made
by buyer b to the mechanism.'® Similarly, seller s’s total payoff is t, — ks(xs, cs), where k; is seller
s’s cost function and ¢ is a monetary transfer made by the mechanism to seller s. When referring
collectively to buyers’ utility functions and sellers’ cost functions, we refer to them as agents’ payoff

functions.

2For instance, if there are two objects a and b, the set of possible packages contains {@}, {a}, {b}, and {a,b}.
The cardinality of the set is 22 = 4.

3Here, seller s producing a package . can equivalently mean physical production of the objects in xs or figurately
the sale of these objects when the seller is endowed with them.

1t may seem more accurate to think of z as a reallocation of objects, in particular when each seller s is initially
endowed with a set of objects Qs. However, the use of the terms “allocation” and “allocate” simplifies language
without too severe a risk of creating confusion.

While standard, the assumption of quasi-linear total payoffs is restrictive. As pointed out in concurrent work by
Garratt and Pycia (2016), efficient bilateral trade may be possible if one relaxes this assumption.



We normalize the utility and cost of non-trading agents to zero, i.e., up(&, ) = 0 and ks(&,-) =
0. We also assume that wuy(zp, vp) and ks(zs,cs) only depend on the agents’ own allocations and
on their own private types. We allow for free-disposal and, without loss of generality, impose
monotonicity on the utility and cost functions, that is, for all buyers, wy(x}, vp) < up(xp, vp) for
any zj, C x, C O and for all sellers, ky(z), c5) < ks(zs, cs) for any 2/, C x; C Q.16

For a feasible allocation € X and types (v, c), define the social gains from trade as

W(z,v,c) := Zub T, Vp) st(azs,cs).

beB s€S
An allocation is efficient if it maximizes social gains from trade. Formally, the set of efficient
allocations is

X*(v,c) = argmax W(z,v,c).
zeX

Let z*(v,c) € X*(v,c) be an efficient allocation.!” Further denote the maximum social gains from
trade by W*(v,c) := W(z*(v,c),v,c).

It is also useful to denote social gains from trade when a subset of buyers I C B and a subset
of sellers J C S are excluded. For any feasible allocation x of that allocation problem, the social

gains from trade are

W_p_j(z,v,c) = Z up(Tp, Vp) Z ks(xs,cs).

beB\I seS\J

The maximum social gains from trade in this two-sided allocation problem is denoted WZ*; _ 5(v,c).
We drop dependencies on (v, c) when there is no risk of confusion.
For notational convenience, let Wfb’. = Wi{b},—@’ Wi g=W* C {5} and Wfb’_ =W Sl —{s}

Buyer b € B and seller s € S are complements if

Wiy, =Wy AW =W <W=W5,

y—8*

The expressions Wfb“ — ij’_ gand W*_ — ij’_ s capture, respectively, the individual marginal
contribution to the social gains from trade of seller s and buyer b when they are added to an
allocation problem that consists of all buyers other than b and all sellers other than s. The right

side is the marginal contribution of adding the pair consisting of b and s to the allocation problem

Imposing monotonicity in a model with free disposal is without loss of generality because a buyer can dispose
of any object in his package that reduces his utility and a seller can produce a larger package and dispose of some
objects if this is less costly than producing a smaller package.

If X*(v,c) contains multiple elements, 2* (v, c) can be chosen arbitrarily from among them.



without this pair. Thus, the inequality simply states that the marginal contribution of the pair is
not less than the sum of the individual marginal contributions when the other agent is not there.
An equivalent representation of the complements condition can be found by adding W* to both

sides of this inequality and rearranging:
W W, W W 2 W W, 1)

We use this alternative representation in the rest of the paper. It states that the sum of the
individual marginal products exceeds the marginal product of the pair.

Following Holmstréom (1979), we say the type space is smoothly connected if for all buyers
b, the set of mappings {up(-,vp) : X = R | v, € V},} is smoothly connected, and for all sellers s,
the set of mappings {ks(-,cs) : X — R | ¢s € Cy} is smoothly connected.'® We assume that the
type space V' x C' is smoothly connected.

We also assume that for every b € B, there exists a least efficient type v, € V} that does not
trade in any efficient allocation, and similarly for sellers, where we let c; € C, denote the least
efficient type for seller s € S.

A direct mechanism is a triple (x,t?,t%), where x : V x C — X is the allocation rule
and t% : V x C — RB and t° : V x C — RY are the payment rules. Thus, given reports
(v,c), x(v,c) is the allocation, buyer b pays tbﬁ(v,c), and seller s receives t7(v,c). An allocation
rule is efficient if it selects an efficient allocation for every (v, c). For the purpose of deriving the
conditions under which efficiency is impossible without running a deficit, the well-known revelation
principle (Myerson, 1981) implies that we can restrict attention to direct mechanisms without loss
of generality.

A mechanism (x,t”,t%) is dominant strategy incentive compatible (DIC) if for each

buyer b, type profile (v, c), and type ¥, for buyer b,

up(xp(V, ), Vi) — 1 (v, €) > up(xp (V1 Vs €), V3) — 1 (Y4, V_p, €),
and for each seller s, type profile (v, c), and type ¢s for seller s,

t{(v,e) = ks(xs(v,€),¢5) 2 17(v, &5, cs) — ks(Xs(v, €5, ¢4), Cs),

where x; and x, denote the packages that buyer b receives and seller s produces under allocation

rule x. Given a type profile (v, c), the revenue R(v,c) generated by a mechanism with transfers

8For a formal definition of smooth connectedness, see Definition 1 in Holmstrém (1979).



(t°,t7) is

)= ty(v.e) =Y tI(v,c).

beB seS

A mechanism satisfies ex post individual rationality (EIR) if for each buyer b and type
profile (v, c), up(xp(v,c), vp) — tf(v, c) > 0, and for each seller s and type profile (v,c), t7(v,c) —
ks(xs(v,c),cs) = 0.

We say that a mechanism is efficient if its allocation rule x(v,c) is efficient. We say that
efficient trade is impossible if all efficient mechanisms satisfying DIC and EIR have R(v,c) < 0

for all (v, c), with a strict inequality for some (v,c).

3 Background: Impossibility of Efficient Trade

In this section, we synthesize results from the literature and use them to derive an impossibility
result for one-to-one trading environments.
To start, it is well known that if the condition
> [+ W —wr ] >w* (2)
beB seS
is satisfied for all (v, c), with a strict inequality for some (v, c), then efficient trade is impossible.
The condition appears, in slightly different forms, in McAfee (1991), Makowski and Mezzetti (1994),
Williams (1999), Yenmez (2015), and Krishna (2002). Our statement of condition (2) explicitly

reflects the two-sided nature of the allocation problems we study.

Lemma 1 Efficient trade is impossible if (2) holds for all (v,c) and with a strict inequality for

some (v, c).

For completeness, we provide a formal proof in the Appendix.'® Here, we develop the intuition
that will be used to extend the impossibility theorem to assignment-representable problems in
Section 4.

Observe first that W* — ij“ is the marginal product of buyer b and W* —W?*_ is the marginal
product of seller s. Interpreted in this way, condition (2) says that the sum of marginal products

exceeds the total product W*. Because incentive compatibility requires that every agent be paid his

' As becomes clear from the proof of Lemma 1, efficient trade is possible if >, (o [W*=W*, [+> [W*—W*_/] <
W™ holds for all (v, c); see Yenmez (2015) for an analysis along these lines.



marginal product,?’ condition (2) implies a deficit. The proof shows that this intuition is correct.
It additionally uses the uniqueness of Groves’ schemes when the type space is smoothly connected
(Holmstrém, 1979) and the fact that the VCG mechanism is the revenue maximizing mechanism
among efficient mechanisms that satisfy DIC and EIR.%!:22

As noted, our focus is on dominant strategy incentive compatibility, while much of the literature
considers Bayesian incentive compatibility. Our approach rests on the insight that, for setups like
ours in which every agent has a least efficient type who never trades, if (2) is satisfied for all
(v,c), with a strict inequality for some (v,c), then efficient trade is impossible in any efficient
mechanism that is Bayesian incentive compatible, provided distributions are independent and have
full support. This insight is based on Theorem 3 of Williams (1999). In this sense, our approach
comes with little loss of generality and allows us to abstract from distributional assumptions.?3
Segal and Whinston (2016) define the marginal core as the set of total payoff vectors such that

no coalition involving all but one agent can profitably deviate. They show that the nonemptiness

of the marginal core, along with some regularity conditions, implies that any efficient mechanism

20Makowski and Ostroy (1987) show that any VCG mechanism is equivalent to a “MP mechanism” that always
gives each agent his marginal product, plus perhaps a lump sum.

213While the VCG mechanism is named after the independent contributions by Vickrey (1961), Clarke (1971), and
Groves (1973), the genealogy of the term is interesting and seems, to us, still somewhat unclear. To the best of
our knowledge, Makowski and Ostroy (1987) were the first to use it. Green and Laffont (1977) seem to have coined
the term Groves schemes in honor of the seminal contribution by Groves (1973), which specializes to VCG with an
appropriately chosen constant. Mas-Colell, Whinston, and Green (1995, Section 23.C) refer to what we call VCG as
a Groves-Clarke scheme. Tracing out the origins of the mechanism is not only complicated by the fact that it has
not been introduced by anyone deliberately (as opposed to, e.g., Nash equilibrium), but also by the circumstance
that the environment for which Groves schemes were first introduced (Groves, 1973) was too rich to permit dominant
strategies. Only when simplified to the setup studied in Groves and Loeb (1975) does the mechanism endow agents
with dominant strategies. More importantly, there appear to be conflicting definitions of VCG that coincide when
there exist least efficient types but differ when such types do not exist.

22There is an interesting parallel between how (2) implies impossibility of efficient trade and how increasing returns
to scale in the theory of the firm implies that a firm cannot break even under price-taking behavior. In either case,
agents are paid their marginal products, whose sum exceeds the total product.

23 Admittedly, our approach is restrictive in that we abstract from interdependent values. Our focus on private
values is not only in line with much of the literature on the possibility or impossibility of efficient trade, but also based
on the insight, due to Jehiel and Moldovanu (2001), that with multi-dimensional types, efficient, incentive-compatible
allocation may be impossible with or without running a deficit when two-stage mechanisms as in Mezzetti (2004)
are not admissible. In a sense, this makes the two-sided allocation problem with private values the pertinent one.
Moreover, even when efficient two-stage mechanisms can be used, whether or not they run a budget deficit depends
on the fine details of the model, such as the distributions. In contrast, our impossibility theorem only requires least
efficient types for every agent who never trade under efficiency, independence, and positive densities on the support;
otherwise, we do not impose any restriction on the distributions. That said, our approach is limited in that we do
not allow for shared ownership. As shown by Cramton, Gibbons, and Klemperer (1987) for a single object that
is jointly owned by ex ante symmetric agents, there is an efficient, incentive compatible, and interim individually
rational mechanism if ownership is sufficiently symmetric. As noted by Fieseler, Kittsteiner, and Moldovanu (2003),
this result does not necessarily extend to interdependent values because of the simultaneous presence of the winner’s
and the loser’s curse. With or without interdependent values, extending our already rich model to also allow for
shared ownership is unlikely to yield clear-cut results because of the intertwined connection between the distributions
of types, ownership shares, and payoff functions.

10



2% Yenmez

runs a deficit. The nonemptiness of the marginal core is equivalent to condition (2)
(2015) uses the converse inequality of Segal and Whinston’s condition to prove the existence of an
efficient DIC-EIR mechanism that does not run a deficit.

Less well understood are the conditions on the primitives of the allocation problem under which
condition (2) holds. For example, (2) is satisfied in the bilateral trade problem of Myerson and
Satterthwaite (1983). Assuming identical supports, the marginal product is W* for both the buyer
and the seller whenever trade occurs, implying that the sum of the marginal products is 2W*. In
the remainder of the paper, we derive conditions under which (2) is satisfied.

We begin by showing that condition (2) is satisfied in all allocation problems in which each
buyer trades with at most one seller and each seller trades with at most one buyer. Such problems
with one-to-one trading are natural when agents’ types are one-dimensional, buyers have unit
demand, sellers have unit capacities, and objects are homogeneous; however, they are not confined
to setups with one-dimensional types. For example, the housing market model of Shapley and
Shubik (1972) has multi-dimensional types because buyers with unit demand have heterogeneous
values for the sellers’ houses.

In what the subsequent literature has referred to as an assignment game, Shapley (1962) derives
a result—stated as Lemma 2 below—that implies that buyers and sellers are complements in an
assignment game. We use this result to show that in all allocation problems involving one-to-one
trading, efficient trade is impossible.

In order to formally state Shapley’s result, we require the following definitions: An assignment
game assumes one-to-one matching between two sides of the “market” (say, buyers and sellers).

It consists of a B x S-dimensional value matrix

a1 a2 - ag
a1 G232 -+ 429

A - . . . . 9 (3)
ap1 apz2 -+ aps

whose entries ay ; give the value if buyer b and seller s are matched. A matching is then defined by
a B x S-dimensional matching matrix L, whose elements [, ; € {0,1} indicate whether buyer b
and seller s are matched together, with [;, s = 1(0) meaning they are (not). A matching is feasible

if the sum of any row or column in the matching matrix is at most one. A feasible matching is

24The marginal core is multi-valued if (2) is satisfied with a strict inequality, single-valued if it is satisfied with an
equality, and empty if it is not satisfied.
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efficient if it maximizes the value
DD lbs s
beB seS
That is, the optimal matching from an assignment game can be found by solving the following

linear programming problem:2>

mLaXE E ly,s ap s

beB seS
subject to Zlb’s <1 forall beDB
seS
and Zlb’s <1 forall seS.
beB

We denote the value generated from an optimal matching by V*(A). Similarly, we let V*(A_j _j)
be the maximal value of an assignment game when rows I C B and columns J C S are removed.
In analogy to (1), a buyer b and a seller s are complements to one another in an assignment
game if their joint value added, V*(A) — V*(A_p _s), is smaller than the sum of their individual
values added, which are V*(A) — V*(A_y,) for the buyer and V*(A) — V*(A. _;) for the seller.

That is, b and s are complements if
VHA) = V(AL )+ V(A = V(A ) >V (A) = V*(A_p —s).

Similarly, two buyers b and b’ (or two sellers s and s’) are substitutes for each other if their joint

value added exceeds the sum of their individual values added:

VHA) = VA )+ VH(A) =V (Ay,) V(A =V (A_pey,.)

5e

VE(A) = VHA) + V() = V(A _y) € VF(A) = V(A _auy):
Shapley (1962) establishes the following result:

Lemma 2 (Shapley, 1962) In any assignment game, any two agents on the same side of the
market are substitutes for each other, while any two agents on opposite sides are complements to

each other.

For any allocation problem in which the efficient allocation is one-to-one for all (v,c), a buyer
b and a seller s who are matched always trade the package that maximizes their joint surplus,

whose value we denote by a; s := max { max,ep, up(x,vy) — ks(x, ¢5), 0}. Using these elements to

2530lutions to this problem can be found by inspection if A is small enough, by using the Hungarian algorithm of
Kuhn (1955), or through linear programming techniques (Dantzig, 1963).
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construct an assignment game value matrix A as in (3), it follows that the allocation problem can
be represented as an assignment game.

At an optimal matching in the assignment game, we have W* — W*, = V*(A) = V*(ALy,),
Wr—Wr_ =V*(A4)-V*(A ), and W*=W*,  =V*(A)—-V*(A_4_s). By Lemma 2, buyers
and sellers in the assignment game are complements. In conjunction with the above relationship
between W* and V*, this result implies that for any b € B and s € S, the complements condi-
tion (1) is satisfied. In other words, buyers and sellers in the underlying allocation problem are
complements.

Let T > 0 be the number of trading buyer-seller pairs under efficiency and, if 7" > 0, relabel
agents so that buyer b, trades with seller s; for 7 = 1,...,T. If a buyer and a seller who optimally
trade together are both removed, the optimal matching does not change for the remaining agents.
Summing up the right side of (1) over 7 thus yields ZZZI(W* - W, _,) =W Because the
marginal product of every agent who does not trade is zero (e.g., if b does not trade, W*—W* b, = 0),
we can likewise sum up the left side of (1) to obtain

T
DWW, W W= W W, ) W -,
=1 beB s€eS

which is the left side of (2). Consequently, in any allocation problem with one-to-one trading,
(1) implies (2). In addition, for any buyer b and seller s, (1), and thus (2), holds strictly for the
type profile v_, = v_;, and c_s = €_5 and v}, and c; such that b and s efficiently trade with each
other and no other trades occur—because b and s are the only traders, the sum of their marginal
products strictly exceeds the maximum social gains from trade. We summarize this in the following

proposition.
Proposition 1 Efficient trade is impossible in any allocation problem with one-to-one trading.

By formalizing arguments outlined in Loertscher, Marx, and Wilkening (2015), Proposition 1
generalizes the impossibility result stated there beyond the homogeneous goods model. It also
goes beyond existing impossibility results by providing conditions on payoff functions (or the trad-
ing technology) such that impossibility obtains. It implies that if buyers and sellers have unit
demand and unit supply (such as in the model of Shapley and Shubik (1972) and much of the
mechanism design literature) or are exogenously restricted to a single trading partner, efficient

trade is impossible. Thus, the intuition that the complementarity between the buyer and the seller
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in a bilateral trade problem leads to the impossibility of efficient trade extends to any allocation
problem involving one-to-one trading.

Because (1) is a pairwise property, summing up over trading pairs in one-to-one trading problem
yields (2) and thereby Proposition 1. When trade is not restricted to be one-to-one, this line of
logic does not directly extend because, even when all buyer-seller pairs are complements, groups
of buyers and sellers can be substitutes. In what follows, we provide conditions on primitives that

guarantee that overall, agents are complements.

4 Assignment-Representable Problems

Having synthesized existing results on impossibility and shown their connection to Shapley (1962),
we now build upon these insights to identify a general class of two-sided allocation problems in which
the complementarity between buyers and sellers is maintained. We begin in Section 4.1 by defining
an assignment-representable allocation problem. In Section 4.2, we establish the relation between
an assignment-representable allocation problem and the assignment game that represents it. In
Section 4.3, we generalize Shapley (1962) to show that (2) holds in any assignment-representable
allocation problem, which establishes the impossibility result for any such problem. Conditions on
primitives for a two-sided allocation problem to be an assignment-representable problem are then

the focus of Section 5.
4.1 Definitions

Consider an assignment game with a value matrix A of dimension (B + 1)O x O. The rows of
the value matrix represent unit constituents of the buyers and sellers, while the columns of the
matrix represent objects. To allow for the matrix to encode the assignment of any feasible package
to a buyer, each buyer in the original allocation problem is represented in the matrix as O unit
constituents. There are O additional rows to represent the unit constituents of the sellers, resulting
in a total of (B + 1)O rows. Each column of the matrix represents one of the O objects.

Let B be the set of buyer unit constituents with cardinality B = B - O. Let S be the set of
seller unit constituents with cardinality S = O. Then B US is the set of all unit constituents, with
typical element r (“r” for row). The cardinality of this set, (B 4 1)O, is equal to the number of
rows of the value matrix.

It is useful to also define B, C B to be the set of unit constituents of buyer b with cardinality
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O. Likewise we define SS - S to be the set of unit constituents of seller s with cardinality O;. We
also define the set of unit constituents I to be the unit constituents corresponding to the buyers in
set I C B, i.e., [:= UbeHBb- The set of seller unit constituents J := USEJSS corresponds to sellers
in set J C S in an analogous way. Finally, we denote by OQj := Usc30; the set of objects in the

potential sets of the sellers in set J.

Definition 1 A unit constituent-object assignment game of a two-sided allocation problem
consists of a (B+1)0O x O matriz A = (ar0),eiugoco With nonnegative elements satisfying aro, =0
for all (r,0) such that r € Sy and o € Oy with s # s' and a (B +1)O x O matching matriz L with

elements I, , € {0,1}.

As an illustration of how a two-sided allocation problem may be represented as a unit constituent-
object assignment game, consider the following example. Suppose there are two buyers, David and
Martin, and one seller, Lloyd. Lloyd can produce two heterogeneous objects, A and B, at cost 2 for
A, 3 for B, and 6 for producing both A and B. David values A at 9, B at 5, and the package AB
at 12, while Martin’s values are 5, 6, and 10, respectively. Efficiency cannot be achieved using one-
to-one trades because the efficient allocation assigns Lloyd’s two objects to two different buyers,
with object A going to David and object B to Martin. However, one can create unit constituents

of the agents in such a way that a corresponding assignment game exists, as shown in Figure 1(a).

Panel (a) Panel (b) Panel (c)

A B A B A B
David—1st unit 915 Martin—1st unit | 5 | 6 David—1st unit | 9 | 5
David—2nd unit | 7 | 3 Martin—2nd unit | 4 | 5 David—2nd unit | 7 | 3
Martin—1st unit | 5 | 6 Lloyd—1st unit 314 Lloyd—1st unit | 3 | 4
Martin—2nd unit | 4 | 5 Lloyd—2nd unit 213 Lloyd—2nd unit | 2 | 3
Lloyd—1st unit 314
Lloyd—2nd unit 213

Figure 1: Unit constituent-object assignment game.

For the buyers, the first unit entries are the stand-alone utilities from A and B, while the second
unit entries are the marginal utilities from adding A or B to the package that already includes the
other object. For the seller, the second unit entries are the marginal costs of producing either A
or B, while the first unit entries are the incremental costs of producing either A or B given that

the other one is produced.
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The assignment of an object to a buyer’s unit constituent means that the buyer receives the
object, while the assignment of an object to a seller’s unit constituent means that the seller does
not produce the object. Thus, if no unit constituent of a seller receives an object, the interpretation
is that the seller produces both objects.

The solution to this assignment game, shown in bold in Figure 1(a), assigns object A to the first
unit constituent of David and B to the first unit constituent of Martin, while no unit constituent
of Lloyd receives an object, meaning that Lloyd produces both objects. The total value from
this assignment is 15. It differs from the maximum social gains from trade of 9 in the two-sided
allocation problem by 6, which is the cost imposed on the seller to produce both objects.

In the two-sided allocation problem underlying a unit constituent-object assignment game,
objects could be produced by a seller and allocated to a buyer or could not be produced. These
allocations are expressed in the matching matrix in the following way. When an object o5 € Oy is
assigned to a unit constituent of buyer b, this implies that the object is produced by seller s and
traded to buyer b. When an object o, € Oy is assigned to a unit constituent of seller s, this implies
that the object is not produced. In this way, the assignment game encodes an analogue of the two-
sided allocation problem, where objects are assigned to buyer unit constituents for consumption
or to seller unit constituents to reduce required production. For buyer unit constituents, the
value matrix encodes the utility that the buyer receives from consuming an object. For seller
unit constituents, the matrix encodes the cost savings from not having to produce an object. The
restriction in Definition 1 that a,, = 0 if r € Ss and o € Oy with s # s’ embeds the constraint
that sellers can only produce objects from their own potential set.

The maximum value created by the unit constituent-object assignment game with value matrix

A can be calculated by solving the following linear programming problem:

V*(A) = max Z Z lroaro

reBus 0€0
subject to Zlho <1 forall reBUS (4)
o0
and Z lro <1 for all o€ Q.
reBUS

It will be useful to define the assignment game in which a subset of unit constituents and a subset
of objects have been removed. For any T C BUS, and K C O, let A_4 _g be defined from matrix

A by removing all rows relating to unit constituents in T and all columns relating to objects in
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K.26
For any unit constituent-object assignment game with value matrix A and any allocation x € X,

a feasible matching L is said to be isomorphic to z if for any o € O,

|1, ifoeumx
Z lro= { 0. otherwise forallbe B and
reBy

|1, ifoe O\ x4
Z lyo = { 0. otherwise for all s € S.
’I‘GSS

When L is isomorphic to z, unit constituents of each buyer b are jointly assigned x; and unit
constituents of each seller s are jointly assigned Qs \ 25, which are the objects that s does not have
to produce under allocation x. Let IL(A, x) be the set of feasible matchings of A that are isomorphic
to x and L*(A, z) C L(A, z) be the set of matchings that are isomorphic to x and return the largest
value. We refer to L*(A, z) as the set of best isomorphic matchings of allocation z in value
matrix A. By focusing on the largest value matchings, we maintain equivalence with the original
optimization problem because, given an agent and the objects in his package, the unit constituents
are assigned to the objects in the best possible way.?” Formally, we define L*(A, z) to be the set
of all L € L(A,x) such that for all L' € L(4,x),

Z Z lr,o Qr o > Z Z l;7o Qro-

reBus 0€0 reBus oc0
Where there is no risk of confusion, we write L* for a best isomorphic matching of = in A. If
L*(A, x) contains more than one element, then L* can be arbitrarily chosen among them. It is also
useful to define 2° to be the allocation where nothing is produced (29 = & for all b and 2% = @
for all s). Let L e L* (A, 2%) be a best isomorphic matching of x°. Notice that L™ matches all
unit constituents of each seller to an object in that seller’s potential set but leaves all buyer unit
constituents unmatched.

We can now formally define an assignment-representable problem:

26Notice that A_4 _y will not necessarily satisfy Definition 1. Infact A_4 _, is a unit constituent-object assignment

game of a two-sided allocation problem if and only if for some I C B and J C S, T=1UJ and K = Qy. That is, for
each buyer either none or all of his unit constituents are removed and for each seller either none or all of his unit
constituents and objects are removed. Observe however that the maximum value of any assignment game, whether
or not it satisfies Definition 1, can be computed using (4).

2TGiven an agent and the objects in his package, there may be multiple ways to assign the objects to the agent’s
unit constituents. To guarantee that the two maximization problems lead to the same result, we require that the
unit constituents be assigned the objects in a way that is optimal for the agent. If one did not focus on the largest
value matchings, Lemma 3 below would no longer hold.
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Definition 2 A two-sided allocation problem is assignment representable if for all (v, c) there
erists a unit constituent-object assignment game satisfying Definition 1 such that for any feasible

allocation x € X and any best isomorphic matching L*,

b(Tp, V) ZZZ ar, forallbeB and
T’EB[) ocO

s(xs, Cs) Z Z — T,Oam,] for all s € S.

T’ES.s OE@

A two-sided allocation problem is assignment representable if all the information needed to
describe an allocation, the social gains from trade of an allocation, and the resulting trade network
can be encoded in the optimal solution of an assignment game between unit constituents and
objects. The utility that a buyer receives from consuming a package equals the sum of the values
generated from assigning that package to unit constituents of that buyer. Likewise, for any seller,
there is an exact correspondence between the cost of producing a package and the value that is

generated from objects not assigned to unit constituents of that seller.

4.2 Relation between Allocation Problems and Assignment Games

We now show that the correspondence between an assignment-representable allocation problem
and the assignment game that represents it is general insofar as it also holds when subsets of
buyers and sellers (and their corresponding unit constituents and objects) are removed. To see
this, consider a two-sided allocation problem that is assignment representable. Remove a subset
of buyers I C B, a subset of sellers J C S, and the objects that correspond to these sellers Qj.
Let z = (($b)beB\H, (:Es)seg\J) be an allocation in this smaller two-sided allocation problem. Let

A be a submatrix of A with the rows corresponding to unit constituents not in IUJ and the

—1ud,—0y

columns corresponding to objects not in Q3. Note that A —0; continues to satisfy Definitions 1

—1uJ,
and 2 for any allocation z. This implies that the smaller two-sided allocation problem is assignment
representable and has A_j 5 _p, 38 the value matrix of the corresponding assignment game.?® We
use this correspondence in the following lemma, which implies that the social gains from trade in

a best isomorphic matching are equal to the maximal social gains from trade generated from the

corresponding assignment game, up to a constant.

28There may be multiple alternative assignment games that correspond to the two-sided allocation problem. We
concentrate on the one obtained by removing rows and columns from our original matrix A.
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Lemma 3 Consider an assignment-representable problem with types (v,c). For any subsets of

agents TC B and J C S,
Wiy =V (A jui—0,) = V (A pui_g,)- ()

The term V*(A_g 5 g ) in (5) captures the value of the assignment game with only sellers S\ J
and objects @ \ Oy present (and no buyers), in which case the optimal matching assigns to every
unit constituent of seller s an element of Q. The term normalizes the right side in (5) to zero

when, given the value matrix A it is optimal to assign all the objects to unit constituents of

—f[Uj,—@J’
sellers. In the underlying allocation problem, this corresponds to a situation in which it is efficient
not to trade.

Lemma 3 allows us to relate the marginal product of buyers and sellers to the values gener-

ated from a best isomorphic matching in the assignment game. To see this, first note that the

normalization term for V*(A) and V*(A_g ) are the same for all b and thus Lemma 3 implies that

DWW =) VHA) - VHA g, ],
beB beB
where A_@b" = A—]E%b,— & Second, by carefully accounting for the normalization terms, we show in
the proof of Lemma 4 in the Appendix that
DWW =W = [VHA) = VH(A_g )] = V(A).
seS seS
These two equations imply that the difference between the sum of marginal products and the

maximum social gains from trade in the two-sided allocation problem,

DWW [+ W W] - W (6)
beB s€S
is equal to
STVHA) = VEA_g, )1+ STIVHA) = VE(A g o)l - VH(A). (7)
beB s€S

The equality between (6) and (7) is the basis for the following lemma:

Lemma 4 An assignment-representable problem satisfies (2) if and only if

DVEHA) = VHAg, D+ D VHA) = VH(A g, )] = VH(A) (8)
beB seS

and satisfies (2) strictly if and only if (8) holds strictly.

19



Before moving on to our main impossibility theorem, it is useful to revisit our example involving
David, Martin, and Lloyd to highlight the correspondence between assignment games and their
underlying allocation problem and to demonstrate how Lemma 3 naturally leads to Lemma 4.

In our example, the buyer and seller sets can be written as: B = {D, M} and S = {£}. The
set of objects is O = {A, B}. Using Definition 2, the two-sided allocation problem in our example
is assignment representable if the associated unit constituent-object assignment game shown in
Figure 1(a) is such that for any feasible allocation x and any best isomorphic matching L®, the

following three equalities hold: first for the buyers,

up(xp,vp) = 1, A9+ 1D, AT+ 1D, g5+ 1D, p3 and

un (@ar; Var) = Uip, 45+ Uy, a4+ g, 56 + Uiy, B9,

and, second, for the seller,

ke(re,ec) = (l%(i,A:; 13 A+ IE 2 ZZZ,B?)) — (2, A3+ 1z, p4+17, a2+ 1F, 53) |

=6
where the two unit constituents for each agent are denoted with subscripts 1 and 2 and where
on, the matching matrix associated with no production, can be defined either as having lﬁ A=
12 p=lor s p=1% ,=1.

To verify that the assignment game is represented by the matrix in Figure 1(a), we can check
that the three equalities above hold for each potential allocation. For example, if we consider the
allocation = = ({A, B}, d,{A, B}), then the left sides of the three equations are equal to 12, 0,
and 6, respectively. There are two best isomorphic matchings, one with lle, A= lf)% g = 1 and one
with lth p=1p,a=11In either case, the right sides of the three equations are equal to 12, 0, and
6, respectively, and thus the equalities are satisfied.

To illustrate the need to use a best isomorphic matching, consider the allocation © = ({4}, &, {A}).
Then the left sides of the three equations are equal to 9, 0, and 2. There are four feasible matchings
that are isomorphic to x, namely the matchings given by l“"/’Dl’A = l%hB =1, lthA = 12273 =1,
%2714 = Zl’B =1, and lf)Q’A = ZQ’B =1, but only the first of these, which corresponds to David’s
first unit constituent being assigned object A and Lloyd’s first unit constituent being assigned
object B, is a best isomorphic matching. Using this best isomorphic matching, the right sides of
the three equations are equal to 9, 0, and 6 — 4 = 2, the same as for the allocation problem.

Repeating this exercise for each allocation x and corresponding best isomorphic matching, one

can show that our example is assignment representable.
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We now verify Lemma 3 and show how it leads to Lemma 4. In the allocation problem of our
example,

W*=9, W'p =4, W¥y, =7, and W*_, =0.

Lemma 3, applied to our example, states that

w* = V¥A) =V (A_(p, Dy M},.)
Wip = VYA (p pyy.) = V(A (D) Doy M5},)
Wiy, = VVA_pnany,) — V(A (D) Dy Ms3,)
Wi = VA (£.00),-{aBy) — V(A (D) Do My MLy L2}, —{AB}):

as well as additional equalities (with both sides equal to zero) associated with both buyers being
excluded or individual buyers being excluded along with the seller. To see that these equalities hold,
note that as illustrated in Figure 1(a), V*(A) = 15, as illustrated in Figure 1(b), V*(A_{p, p,},.) =
10, and as illustrated in Figure 1(c), V*(A_{ar, m,3,.) = 13. With both buyers excluded, we have
V*(A_ipy, Do, My, M5},.) = 6. Thus, the right sides of the first three equalities above are equal to
15—6=9,10 -6 = 4, and 13 — 6 = 7, matching the left sides. Eliminating the seller and his
associated objects, V*(A_y. r, £,},—¢a,B}) = 0, so the fourth equality above also holds, being equal
to zero on both sides.

We now illustrate Lemma 4. In the allocation problem of our example, the sum of the agents’
marginal products minus the maximum social gains from trade is

(W* = WZp )+ (W = Wy )+ (W5 = W) = W =T,
=9

=9—4 =97 =9-0
Thus, because this is positive, condition (2) is satisfied. Using Lemma 3, the analogous expression

for the unit constituent-object assignment game is

(V*(A) =V (A_ipy, 0oy, ) +(V(A) = V(A_apy oy, ) F(V(A) = V(A2 20y, —a.8))— VT (A),
=15—10 =15—13 =15-0 =15

which equals 7 and is thus the same as for the allocation problem.

4.3 Impossibility of Efficient Trade in Assignment-Representable Problems
We now show the following;:

Theorem 1 Efficient trade is impossible in any assignment-representable problem.
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Given Lemma 4, in order to prove Theorem 1, it is sufficient to show that (8) is satisfied in any
unit constituent-object assignment game (and strictly for some type vector). Shapley’s (1962)
result (our Lemma 2) and our next result, which generalizes Shapley’s, prove useful for this step
by ensuring that unit constituents are substitutes for each other, which implies that the sum of
their marginal products exceeds the marginal product of the agent.

For an assignment game between unit constituents and objects, we say that unit constituents
are set substitutes if for any two disjoint subsets of unit constituents T C BUS and T’ C BUS

with TNT = o,
VH(A) = VH(A_y )+ VH(A) = V(A ) S VHA) = V(A s ). 9)

We say that any collection of unit constituents are substitutes if for any subset of unit

constituents T - BuU S,

D IVHA) = VAL S VHA) - VAL ). (10)

g0

reT
Likewise, objects are set substitutes if for any two disjoint subsets of objects K C @ and K’ C O

with KNK' = &,
VHA) = V(A k) + V*(A) = V(A k) S V*(A4) = V(A —kur),
and any collection of objects are substitutes if for any subset of objects K C O,

D IVHA) = VHA )] S VHA) - V(A x).
oeK

In addition, unit constituents and objects are set complements if for any TCBUS and
K C O,

V*(A) — VH(A_3 )+ V*(A) - V*(A k) >V*"(A) - V*(A—T,—K)' (11)

Lemma 5 For any assignment game between unit constituents and objects, (i) unit constituents
are set substitutes, (ii) any collection of unit constituents are substitutes, (iii) objects are set sub-
stitutes, (iv) any collection of objects are substitutes, and (v) unit constituents and objects are set

complements.

As shown in the proof of Theorem 1 in the Appendix, Shapley’s (1962) result, together with

its generalization in Lemma 5 (specifically parts (ii)—(iv)) and a careful accounting of matches
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between objects and sellers, allows one to show that (8) is satisfied in any unit constituent-object
assignment game. Thus, using Lemma 4, efficient trade is impossible in all assignment-representable
problems. Interestingly, while complementarity between sellers and buyers remains at the heart of

the argument, the proof also relies on our generalization of Shapley’s substitutes condition.

5 Characterization of Assignment-Representable Problems

In this section, we first characterize assignment-representable problems by showing that an allo-
cation problem is assignment representable if and only if each agent is decomposable, that is, his
payoff function can be derived as the solution to a unit constituent-object assignment game. Then,
we introduce a new family of payoff functions exhibiting what we call size-dependent discounts
(SDD) and show that SDD implies decomposability. Finally, we discuss the relations between
SDD, decomposability, and substitutes payoffs.

5.1 Decomposition

For a buyer b € B with type v;, consider an assignment game between unit constituents and objects
with an O x O value matrix A®. Each row of A represents a unit constituent of b and each column
represents an object. Let V*(A®) be the maximal value that can be generated from the assignment

game. Then A’ is a decomposition of buyer b with type vy if for any package z; € P,
up(p, Vi) = V7 (43,),

where Ag’cb = Aé,—@\x;,’ that is, Agb is the submatrix of A’ containing exclusively its columns
related to objects in x;. In other words, a decomposition of a buyer exists if it is possible to
construct an assignment game whose maximal value coincides with the buyer’s utility function for
any package of objects. Buyer b is decomposable if such a decomposition exists for every type vy.
This definition is equivalent to that of assignment valuations (Ostrovsky and Paes Leme, 2015),
that is, a buyer is decomposable if and only if his utility function is an assignment valuation.?

The term decomposability highlights that when agents can be decomposed into unit constituents,

then the allocation problem can be turned into an assignment game between unit constituents

29 Assignment valuations (AV) are a special case of the endowment assignment valuations (EAV) introduced by
Hatfield and Milgrom (2005) and used by Ostrovsky and Paes Leme (2015). If all agents’ payoff functions are EAV,
then the allocation problem can also be represented as a series of one-to-one matches and our impossibility theorem
also holds. The main difference between EAV and AV is that EAV introduces “null” objects that can only be
assigned to constituents of a particular agent. Because in our setting such objects do not relate naturally to the
actual allocation, we have chosen to work with the stricter, but more intuitive, condition.
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and objects.®? It also points to a connection between assignment games and the ideas of Hurwicz
(1973), who uses the term decomposable to refer to environments without externalities. Indeed,
because an agent is decomposable if his payoff function is the solution to a unit constituent-object
assignment game, decomposability in our setting means that there are no externalities between

t.31 Importantly, as we discuss below, decomposability does not

unit constituents of the same agen
exclude the possibility that the payoff function itself exhibits externalities.
We extend the concept of decomposability to sellers. The Og x Oy value matrix A® is a de-

composition of seller s € S with type c; if for any package =5 € Py:
ks(zs,¢5) = VI(A®) = VI (Ap,\a,)s

_z,» the submatrix of A° containing exclusively the columns related to objects

where A(‘as\ms = Af

in Oy \ z,. Seller s is decomposable if such a decomposition exists for each type c.3?

Our decomposition of sellers turns a two-sided allocation problem between buyers and sellers
into a one-sided allocation problem between agents and objects. Each object can be assigned to
either a buyer (or one of his unit constituents) in order to increase his utility, or to a seller (or one of
his unit constituents) in order to decrease his cost. This treats agents on both sides symmetrically
and vastly simplifies the problem. If all agents are decomposable, then their decompositions can
be stacked in order to obtain a unit constituent-object assignment game that satisfies Definition 1,
which implies that the two-sided allocation problem is assignment representable. In an assignment-
representable allocation problem, the efficient allocation corresponds to the optimal matching in
the unit constituent-object assignment game. If some agent is not decomposable, then a unit

constituent-object assignment game cannot be constructed.

Proposition 2 A two-sided allocation problem is assignment representable if and only if each

buyer and seller is decomposable.

30 Aizerman and Malishevski (1981) introduce a decomposition concept that is different in nature to ours. They
show that a choice function can be decomposed into a union of individual choice functions that each picks one object
if and only if it is path-independent (see their Theorem 3). These individual choice functions can be thought of as unit
constituents. In contrast to our concept of unit constituents, these individual choice functions operate independently
from one another, and the same object can be picked by multiple ones. Chambers and Yenmez (2017) build upon
Theorem 3 of Aizerman and Malishevski (1981) to show that many-to-many matching problems without transfers
can be turned into one-to-one problems whenever agents have path-independent choice functions.

31There are no externalities in the unit constituent-object assignment game because any unit constituent’s valuation
for a given object is independent of the valuations of any other unit constituent. Of course, there is still rivalry in
consumption between unit constituents because every object can only be allocated once.

32We have restricted the number of unit constituents to be equal to the maximum number of objects that an agent
can consume or produce. This is without loss of generality, as shown in Lemma 6 at the end of the Appendix.
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Proposition 2 and Theorem 1 imply the impossibility of efficient trade when all buyers and
sellers are decomposable, or equivalently have assignment valuations. To our knowledge, this is the
first instance in which the, in our view surprising, connection between the impossibility of efficient

trade and assignment valuations is recognized.

5.2 Size-dependent Discounts Payoff Functions

Proposition 2 explicitly states a condition on the primitives of the model for the impossibility of
efficient trade; importantly this condition can be verified individually for each agent. However, it
leaves open the question of what are the families of payoff functions that ensure decomposability.
Although a complete characterization of decomposability is beyond the scope of this paper, we
now provide a simple sufficient condition for decomposability that is satisfied in a wide array of
economically relevant models.

To develop a sense of what is sufficient, it is useful to begin with payoff functions that are
additive in the stand-alone values of individual objects. Specifically, buyer b has an additive payoff
function if for any package = and arbitrary ordering of the objects {o1,...,00} in x, up(z,vp) =
Zz=1 up({om}, vp). As mentioned in the introduction, agents with additive payoff functions are
obviously decomposable. Notice also that with additive payoffs, externalities are not only absent
at the level of unit constituents, but also at the level of the agent: a buyer’s willingness to pay for
an object is independent of whatever other goods he may or may not be allocated.

One can depart substantively from additive payoffs and no externalities at the level of the
agent’s payoff function without losing decomposability. As a first point of departure, consider the
homogeneous goods model with nonincreasing marginal values. The homogeneous goods assump-
tion along with free disposal means that the stand-alone utility of every object is a nonnegative
constant, that is, up({o;},vy) = v > 0 for all o; € O, while nonincreasing marginal values means
that up(z, vy) = Z‘]ﬂl max{v—d;,0}, where the §;’s are “discounts” that satisfy 0 = §; < o < ...,
reflecting the decrease in marginal values as the size of the package x increases. Clearly, there are
externalities at the agent’s payoff level whenever §; > 0 for some j because then the willing-
ness to pay for the j-th object depends on whether the agent is allocated other objects as well.
Nevertheless, homogeneous goods and nonincreasing marginal values ensure decomposability.

These two specifications, which at first sight differ starkly, can be relaxed (and recombined)
further. A first and natural extension of the homogeneous goods model is an additively separable

version of what Ausubel (2006) terms a heterogeneous commodity model. Let {0,,}¥_, be a
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partition of @ comprised of M blocks (or “commodities”), and suppose that within each block a
buyer views objects as homogeneous and has nonincreasing marginal values for them.?? That is, if

buyer b consumes a package x,, that consists exclusively of objects in the m-th block, his utility is

[zm|

up(Tm, vp) = Z max{vy, — dm, 0},
i=1

where vy, is the stand-alone utility of objects in the m-th block (i.e., up({om}, vs) = vy, for all
om € Oy,) and the §,,;’s are block-specific size-dependent discounts that satisfy 0 = d,,1 < 02 <
..., reflecting the nonincreasing nature of marginal values. Additive separability then means that

if buyer b consumes z = U, &, his utility is

S

M
up(x,vp) = up(Tm, vp) = Z max{vy, — dm,0}.

Given that the homogeneous goods payoff functions ensure decomposability, not surprisingly so do
heterogeneous commodities payoff functions of the additively separable form.

The homogeneous goods model can independently be extended to incorporate heterogeneity in
stand-alone values when the assumption of block-specific size-dependent discounts is maintained.
To fix ideas, assume for now that there is only one block and let z C O be b’s consumption bundle.
Then let o(;)(x) be buyer b’s i-th most preferred object in this bundle according to the objects’

stand-alone values for a given vy, that is,

up({o(1y (z)}, vp) > w({o) ()}, vb) > ... > up({o(z)) ()}, Vb),

where to conserve notation we do not indicate the dependence of o(;)(z) on b and vy,. If buyer b has
such heterogeneous stand-alone values and size-dependent discounts satisfying 0 = §; < d9 < ...,
then his utility from consuming z is

|z]

up(z,vp) = Zmax{ub({o(i) ()}, vp) — 9;,0}.
i=1

For similar reasons as in the homogeneous goods model, this type of payoff function, which combines
the richness of the stand-alone values admitted by additive payoffs with a notion of decreasing
marginal values typically associated with the homogeneous goods model, also ensures that the

agent is decomposable. Of course, nothing in this construction requires there to be only one block.

33Following set theory terminology, we call an element of a partition a block. Blocks may reflect commodities, as
in Ausubel’s model, or may be specific to each agent.
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Our definition of size-dependent discounts below allows for an arbitrary number of blocks; as
a result it identifies a family of payoff functions that nests additive payoffs, homogeneous goods,

and the additively separable version of Ausubel’s model.

Definition 3 Buyer b’s utility function exhibits SDD if for each type vy there exists a partition
{0 IM_, and a collection of discount vectors § = {&1,...,0n} with 0 = Omi1 < Omo < -0 <
Om,0,, for allm e {1,..., M} such that for any z € P,

M ‘xm‘

up(z, vp) Z Z max{up( {0 (a:m)},vb) — Om,i, 0},

m=1 i=1

where for allm € {1,.., M}, zp :=2x N0,y

SDD requires (i) that a buyer’s utility function be additive across blocks in a partition of the
set of objects and (ii) that within each block, the value of a package be equal to the sum of the
stand-alone utilities minus a total discount that depends on the number of units in the block that
the package contains.

Analogous to the buyers, given a subset of objects x C O, denote the object in this subset

with the i-th lowest stand-alone cost for seller s, as o; ().

Definition 4 Seller s’s cost function exhibits SDD if for each type cs there exists a partition
{@mvs}%le and collection of discount vectors § = {01,...,0p} with 0 = dpp1 < dppo < -+ <

Om,Om.s for allm € {1,..., M} such that for any x € P,,

M ‘xm‘

J}CS ZZ xm}cs)"i‘émz)y

m=1 i=1

where Ty, = N Oy 5.

A seller’s cost function exhibits SDD if there exists a partition of the seller’s potential set where
(i) costs are additive across blocks, and (ii) within each block, the cost of producing a package is
equal to the sum of the stand-alone costs plus a total increment that only depends on the number
of units of the block that the package contains. Such preferences may represent a situation in which
a seller has M production lines or factories and each production facility produces homogeneous
goods at nondecreasing marginal costs.

By construction, the family of SDD payoff functions nests a wide range of payoff functions

as special cases. As mentioned earlier, if all stand-alone utilities (costs) are the same, then the
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buyer (seller) considers the objects to be homogeneous. If the discount (increment) parameters
are very large then buyers (sellers) are unit traders in the sense that they efficiently consume,
respectively produce, packages containing at most one unit.3* The assignment game of Shapley
and Shubik (1972) is a special case of this model because buyers are unit traders and the potential
set of each seller contains one object. In contrast, if the discount (increment) parameters are zero
or if each block contains exactly one object, then the agent has additive payoffs. The version of
Ausubel’s (2006) model in which payoffs are additively separable across commodities satisfies SDD.
Although additive separability is more restrictive than the model Ausubel studies, as mentioned,
SDD permits heterogeneity in stand-alone values of objects within each commodity (or block),
which Ausubel’s model does not.

The following results show that the general nature of SDD payoff functions allows us to classify

various well-known models as assignment-representable problems.
Theorem 2 An agent is decomposable if his payoff function exhibits SDD.

Corollary 1 Any two-sided allocation problem in which all agents’ payoff functions exhibit SDD

s assignment representable.

An immediate implication of Corollary 1 is that efficient trade is impossible in any two-sided
allocation problem in which all payoff functions exhibit SDD. Because decomposability is deter-
mined at the individual level, Corollary 1 allows us to derive the impossibility of efficient trade for

setups in which agents have different payoff functions, as long as all of them exhibit SDD.

5.3 Size-Dependent Discounts, Decomposability, and Substitutes Payoffs

We conclude this section by analyzing the relation between size-dependent discounts, decompos-
ability, and substitutes payoffs. We have defined size-dependent discounts and decomposability
above, so we begin by defining substitutes payoffs.

For a buyer b with type v, consuming a package x € P, two disjoint subsets of that package

y,z C x with y N z = @ are substitutes for each other if

up(z, vp) — up(z \ y, vp) +up(z, vp) — up(z \ 2, vp) < uplx, vp) —up(z \ (y U 2), vp),

34 Allocation problems involving one-to-one trading can be mapped into an assignment-representable problem with
SDD payoff functions by first determining the package that maximizes the joint surplus of each pair and then
redefining cost and utility functions over these efficient packages. Agents in this transformed problem are unit
traders.
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that is, if the joint marginal utility of y and z is greater than or equal to the sum of their individual
marginal utilities. This definition specializes to Shapley’s definition of substitutes if y and z each
only contain one object. For a seller s with type cs producing a package z € Py, two disjoint
subsets of that package y, z C x with y Nz = @ are substitutes for each other if the joint marginal

cost of y and z is less than or equal to the sum of their individual marginal costs:
k8($7 CS) - k:s(:lt \ Y, Cs) + ks(xycs) - ks(x \ Z7Cs) > ks($a Cs) - ks($ \ (y U Z),Cs).

We say that an agent has substitutes payoffs if for any possible type and package, any two
disjoint subsets of that package are substitutes for one another.

In all the applications introduced above, buyers and sellers had substitutes payoffs. This is not
a coincidence. The following proposition shows that decomposability is a stricter condition than

substitutes payoffs and that SDD is a stricter condition than decomposability.

Proposition 3 (i) SDD implies decomposability. (ii) Decomposability implies substitutes payoffs.

(iii) The converse statements are false if and only if there are three or more objects.

Part (i) of Proposition 3 is a restatement of Theorem 2 and therefore does not require a separate
proof. Part (ii) reflects a result first reported by Hatfield and Milgrom (2005, Theorem 14) for

35 For completeness, and because our definition of substitutes

endowment assignment valuations.
payoffs differs from theirs and applies to sellers as well, we provide a proof of part (ii) in the
Appendix.

We now turn to part (iii) and first show that the converse statements hold if there are only two

objects, say o1 and 02.%® Consider a buyer. By the definition of substitutes payoffs:

up({01,02}, vy) —up({o1}, ve) + up({o1, 02}, v) — up({02}, viy) < wp({01,02}, vp),

where the normalization u, (2, vy) = 0 has been used. By setting 0 = uy ({01}, vp) +up({o2},vp) —
up({01,02}, vp), which is nonnegative because objects are substitutes, we obtain the size-dependent
discount. An analogous reasoning holds for a seller. Thus, with only two objects, substitutes
payoffs imply SDD, which by part (ii) implies decomposability.

We are left to show that with more than two objects, the converse statements of (i) and (ii)

are not true. We do this by adding a third object to our earlier example.

35Ostrovsky and Paes Leme (2015, Theorem 1) show that substitutes, as defined by Hatfield and Milgrom (2005),
do not imply endowment assignment valuations.
36The converse statements hold trivially with only one object.
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Recall from that example that David had stand-alone utilities of 9 and 5 for objects A and B
and derived a utility of 12 from the package AB. Suppose now that, in addition, there is a third
object whose stand-alone utility for David is 7, while his utilities from packages AC, BC, and
ABC are 14, 11, and 16, respectively. It is easy to verify that David has substitutes payoffs.

We now show that David is not decomposable. In order to represent David’s utility function
as a unit constituent-object assignment game, we need to find values a, b, ¢, d, e, and f in Figure
2(a) such that David’s utility corresponds to the solution of the assignment game for any subset
of objects. When looking only at the package AB, we require that either (i) a = 7 and b < 3
or (i) a < 7 and b = 3. In both of these cases, we must set ¢ = 6 in order for the package
BC to have a value of 11. However, this is incompatible with a value of only 14 for AC. Thus,
David is not decomposable.?” This result extends trivially to any larger number of objects because
decomposability requires that the equality between the utility and the value of the assignment

game hold for all subsets of objects.

Panel (a) Panel (b)

David — 2nd unit
David — 3rd unit

David — 2nd unit
David — 3rd unit

A
David — 1st unit 9
a
d

o | o o O
|0 |[3Q

A
David — 1st unit 9
8
7

no| ol o g
ENESUEN G

Figure 2: Decompositions of David with three objects.

Figure 2(b) provides an example in which David is decomposable but his payoff function does
not exhibit SDD. In this example, David’s utilities are 9, 5, and 7 for A, B, and C, respectively.
Further, his utilities for packages AB, AC, BC, and ABC are 13, 15, 10, and 17. SDD requires the
existence of a single discount that applies to all packages of two objects. However, the discount for
assembling a package consisting of objects AB is 1, while the discount for assembling the package
consisting of objects BC is 2. Thus, in this case, we have decomposability but not SDD.3® This
example can be extended to any larger number of objects as follows. For packages of two objects,
set the discount to 1 if the package contains A and to 2 otherwise. Then set d3 < dq4 < ... s0

that the total discount for a package of size n > 3 is 1+ ) 1" . d; if the package contains A and

37 An analogous counterexample can be constructed for our seller Lloyd. If Lloyd can produce object C' at a cost
of 4, packages AC and BC' at a cost of 7, and package ABC at a cost of 12, he has substitutes payoffs but is not
decomposable.

38GQimilarly, if Lloyd’s production costs for C, AC, BC, and ABC are 4, 7, 9, and 13, then he is decomposable but
his cost function does not exhibit SDD.
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24> 5 6; otherwise.

6 Conclusion

Private information has been shown to be a transaction cost that prevents efficient reallocation in
two-sided setups with bilateral trade or homogeneous goods. We derive conditions under which
the impossibility of efficient trade extends to richer environments in which buyers and sellers have
multi-dimensional types that are private information.

We begin by synthesizing the literature and showing that a result due to Shapley (1962), which
implies that buyers and sellers are complements in assignment games, can be used together with the
insights from the literature on dominant strategy mechanisms to prove the impossibility of efficient
trades in all two-sided allocation problems with one-to-one trading. Generalizing Shapley’s result
to sets of unit constituents of decomposable buyers and sellers, we then provide a new impossibility
theorem based on decomposability that applies to general setups in which buyers consume packages
of objects produced by different sellers and sellers produce packages of objects consumed by different
buyers.

Besides impossibility, decomposability implies that the efficient allocation of the two-sided
allocation problem corresponds to the solution to an assignment game between objects and unit
constituents, which makes the problem computationally tractable because the solution can be
found using linear programming. It also implies that the core is nonempty and that competitive
equilibrium prices exist (Shapley and Shubik, 1972).

Because decomposability is a condition on payoff functions, the condition for our impossibil-
ity result can be verified without having to account for the interactions between different agents,
whose payoff functions may vary considerably. Furthermore, we introduce a general class of payoff
functions—those with size-dependent discounts—that ensures decomposability and thus impossibil-
ity. The SDD family nests a wide range of payoff functions as special cases, including homogeneous
goods, additive payoffs, unit demands and supplies, and an additively separable version of the het-
erogeneous commodities model of Ausubel (2006). In light of this, the classic impossibility results
of Vickrey (1961), Myerson and Satterthwaite (1983), and Gresik and Satterthwaite (1989) as well
as the impossibility of efficient trade for the Shapley-Shubik model arise because agents’ payoff
functions exhibit SDD.

This paper opens up a number of avenues for future research. Although the paper is immedi-
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ately motivated by the Coase Theorem and by improving our understanding of secondary markets,
and thereby relates to market design in two-sided settings (Loertscher, Marx, and Wilkening,
2015; Milgrom, 2017), the concept of SDD payoff functions that emerges from our analysis seems
of independent interest. Without additional structure, package problems suffer from a curse of
dimensionality that makes evaluating packages and communicating information practically impos-
sible. For example, even when there are only ten objects to be allocated, an agent would have
to evaluate and express valuations for more than a thousand different packages. In contrast, with
SDD preferences, agents would only have to evaluate and communicate the ten stand-alone utilities
and nine discounts. Allowing for the expression of SDD payoffs and encoding them in assignment
game form thus substantially reduces the burden for agents and the designer with regard to com-
munication, computation, and information acquisition. From a theoretical perspective, deriving
more general conditions for agents to be decomposable would seem valuable.

The general impossibility theorem we derive raises another, fundamental question: What are
detail-free mechanisms that endow agents with dominant strategies, allocate close to efficiently,
and never run a deficit? For homogeneous goods with unit demands and supplies, McAfee (1992)
develops such a mechanism, which sacrifices at most the least valuable of all the trades that should
occur under efficiency. While the extension to buyers and sellers with multi-unit demands and
supplies and multi-dimensional types poses major challenges (Loertscher and Mezzetti, 2017), the
monotonicity properties of the homogeneous goods model give it considerable tractability. With
heterogeneous objects, much of this structure is lost. For example, in a Shapley-Shubik model,
efficiency may dictate that a high cost seller trade while a low cost seller remain inactive. Progress
in the development of practical, deficit-free mechanisms for heterogeneous objects is therefore likely

to face formidable obstacles, yet commensurate rewards.
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Appendix: Proofs
Proof of Lemma 1: Define for every buyer b,

WYEC (v_y,c) == min W*(vy,v_p,c).
vpEV)

Similarly, for every seller s, define

WVE%(v,c_y) := min W*(v,c,,c_y).
cs€Cs

Notice that WYbCG(V_b, c) and WYCC(v,c_,) are independent of, respectively, v, and c,.
The VCG mechanism selects 2*(v, c) € X*(v, ¢), requires each buyer to pay a transfer payment
of

ty(v,e) = WYC% (v y,¢) — (W*(v,c) — up(z*(v, ), vp)),

and pays each seller a transfer payment of
tg(vv C) = W*(Vv C) + k‘s(ﬂj‘*(v, C), CS) - WYSCG(Vv C—S)'

Because we have assumed that there exists a least efficient buyer type, v, is the minimizer of
W*(vp, v_p,c), and similarly €5 is the minimizer of W*(v,cs,c_s). Thus, in our environment,
WYEC(v_p,c) = W=, (v_p,c) and WVYCC(v,e_ ) = Wr_(v,c—s).

By the revenue equivalence arguments of Green and Laffont (1977) and Holmstrém (1979), the
VCG mechanism is the revenue maximizing mechanism among all mechanisms that respect agents’
individual rationality constraints ex post and endow them with dominant strategies. Our focus on

the VCG mechanism is therefore without loss of generality.

Revenue to the mechanism when the types are (v, c), denoted R(v,c), is

R(v.e) =Y t)(v,e) =Y tI(v.c)

beB seS
— W v,e) + YW (v ) — W) + YW (vieoy) — (v, )]
beB seS

Noting that W*, (v,c) does not depend on v, and so W*, (v,c) = W*, (v_p,c), and similarly

Wr_ (v,c) = W _s(v,c_s), the condition for VCG revenue, R(v,c), to be less than or equal to

)

zero is equivalent to

Z[W* (V7 C) - Wib,.(vv C)] + Z[W*(V7 C) - W.T—s("? C)] >Wwr (V7 C)? (12)
beB seS
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which is equivalent to condition (2).
It is clear from the argument above that for a given (v,c), if (2) holds strictly (and so (12)

holds strictly), then VCG revenue is negative, i.e., R(v,c) < 0. B

Proof of Lemma 3: Consider the allocation problem without buyers in I and sellers in J. Let x
be any allocation in that problem and let 2° be the empty allocation (i.e. xb o forall be B\1
and 29 = @ for all s € S\J). Let L® and L be best isomorphic matchings for these two allocations

in A By Definition 2,

—fuj,~oy

up(Tp, Vi) = Z Z lroaro forallbeB\I, and
T’E]Bb 0€0\0y

s(zs,Cs) olro) forall seS\J.
=> > ] \

reS, 0€0\0y

Recall that social gains from trade W_j _j(z, v, c) is

W_1_j(z,v,c) = Z up(zp, vp) Z ks(xs,cs).

beB\I seS\J

Combining these two results yields

W_p_j(z,v,c) = ZZZZ ZZZ ro = lr.o Gro]

bEB\I rcB, 0€0\Oy s€S\J rc§, 0€0\Oy
0
= 2 2 Weae= ) D loan
re(B\Hu(§\J) 0€0\0y re§\J 0€0\0y

Recalling that LY optimally matches the unit constituents of each seller s with the objects in O,
0
Z Z lrotro= V*(A—Euj,—@J) for any J C S.
re§\J 0€0\Oy
Substituting this into the equation above yields
W—H,_J(l‘, v, C) = Z Z lf,o aT,O - V*(A—BUJ,—QJ)‘ (13)
re@\DU(S\]J) 0€0\Oy
To complete the proof, it remains to show that L* is an optimal matching of A—ﬁuj _oy where
x* is a feasible maximizer of W_;_j(z,v,c) and L the best isomorphic matching associated
with z*. To see this, consider any feasible matching of A_; ; _0y° Because it assigns each ob-

ject at most once, it is an isomorphic matching of some allocation. The output it produces is

therefore at most the output produced by a best isomorphic matching of that allocation. By
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(13) and because z* is efficient, this cannot exceed the output created by L*", which is equal to
Wi _;+V* (A—]Eauj,—@J)' The latter is therefore an optimal matching of A—ﬁui—@y Consequently,

T*

Zre(ﬁ\ﬁ)U(S\j) 2 oc0 o Oro = V*(A—T[UJL—@J) and

Wo-3 =V 15-0,) =V (4 pujo,) ®

Proof of Lemma 4: We show that (2) and (8) are equivalent.
Taking I = {b} and J = & in equation (5) of Lemma 3 gives us W*, =V*(A_ 5 )—V*(4_ 3 ),
and taking [ = @ and J = @ gives W* = V*(A4) — V*(A_ ). Thus, summing over all b in B,
DWW WE, =Y VHA) - VA, )] (14)
beB beB

Taking I = @ and J = {s} in (5) implies that W*_, = V*(A_g _o ) — V*(A_g 5, _o,)- Thus,

W =W = VA = VA, o)| - [Vi(As) ~ V' (A, o)

Summing over all s € S and noting that the final term in the expression above is the value of
optimally assigning all objects in Q4 to unit constituents in Ss, which when summed over all sellers

gives V*(A_5 ) —V*(A_g s o) = V*(A_g ), we have

MW =W ] = [VHA) =V (A o) =V (A5) (15)
seS sES
Recall from above that

W* = V*(4) ~ V*(A_3). (16)

Combining (14), (15), and (16), and noting that the final terms in (15) and (16) are the same, it
follows that (2) holds in an assignment-representable problem if and only if (8) holds, and holds
strictly if and only if (8) holds strictly. B

Proof of Lemma 5: We begin by proving part (ii), showing that (10) holds. Observe first that
(10) holds with an equality if T < 1, so we assume that 7' > 2. Label the elements of T such that
T = {r, ...,z } and define Ty := {r1,...,7n} for any n € {1,...,T} as well as Ty := @. By Lemma
2, for any m € {2, ,T} and n € {1,...,m — 1}, r,,, and r,, are substitutes for each other in the

assignment game with value matrix A—Tnfl . That is, for any m € {2, ..., T} andn € {1,....m—1},

V*(A—Tn—l,.) — V*(A_Trnflu{rm},.) + V*(A—frnfl,.) — V*(A_Tm') < V*(A—frnfl,.) — V*(A—mu{rm},.)=

39



which can be rearranged as

VA )= VAl o) SVIALs )= Vi Ag upos)- (17)

Evaluating (17) at n =1,...,m — 1 gives us a series of m — 1 inequalities of the form

Vi) = VHA, ) < VAL ) = Vi Apiry,)

V*(A—h,.) - V*(A—{rl,r’m},.) < V*(A—{T’l,rz},.) - V*(A—{rl,rg,rm},.)
VA g, , )=V (A o) < ViAg  )-Vi(Ag )
which implies
VHA) = VH(A, ) S V(A e )=VH(A 4 ). (18)

Because (17) holds for any m € {2,...,T'}, so does (18). When m =1, T,,_; = Ty := @, in which

case (18) is satisfied with an equality. Therefore (18) implies

T T
YVHA) VALl < D IVHALg, )=V (AL, )]

m=1 m=1
= Vi(A_g )~ V(s )
= VHA) - VA ),

where the first equality expands the sum and cancels terms and the final equality uses Tp = @ and
’]AI‘T = T. This completes the proof that (10) holds and so completes the proof of part (ii).

We now turn to the proof of part (i), showing that (9) holds. Similar to the case above, (9) holds
with an equality if either T=coT=0 , so we focus on the case in which both subsets contain
at least one element. As before, let T,, := {r1,...,rn} for any n € {1, ,T} and, analogously, let
T, .= {rh,...,r. } for any m € {1,...,T"}. Define Ty := @ and T} := @.

By Lemma 2, for any n € {1,..,7} and m € {1,...,7'}, r, and r/ are substitutes for each

other in the assignment game with value matrix A . That is, for any n € {1, ..., T } and

_Tnflurﬁ‘{mfl"
me{l,.., 1",
V*(A_Tn71UT27L717.) B V*(A_TnUT;n—lv') + V*(A_Tn*lUT,mfl") B V*(A_Tnflurmnr)
< V*(A_TMUT,WN) — V*(A—Tnu’ﬂ‘;n,.)'
By rearranging the above inequality, we obtain
V*(A—Tnfluﬁgn,l,.) — V*(A—Tnufr;n,l,.) < V*(A—frnflufr;n,.) — V*(A—frnufr;n,.)' (19)
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By an analogous argument to the one developed in the proof of part (ii), keeping n fixed and
invoking (19) for each possible value of m between 1 and T’ yields a series of T” inequalities such
that the right side of each is equal to the left side of the next. The left side of the first one must

therefore be weakly smaller than the right side of the last one, that is,
ViALg, )= V(ALg, ) <V Ay op ) = VI (Ag, o)
which is equivalent to

VA A g, )= V(A o) SVI(ALg, )= V(AL o )-

Because this inequality holds for any n € {1, ..., T }, analogous reasoning to above yields
VH(A) =V (A_y ) SVH(A_z) = V(A )

which is equivalent to (9) and completes the proof of part (i).

By the symmetry of assignment games, the proofs of parts (iii) and (iv) are analogous.

We conclude with the proof of part (v), showing that (11) holds. Similarly to the proofs of
parts (i) and (i), (11) holds with an equality if either T = @& or K = @, hence we focus on the
case in which both subsets contain at least one element. As before, let ']T‘n = {ry,...,rp} for any
n e {1,..,T} and, analogously, let K, := {01, ..., 0m } for any m € {1,..., K}. Define Ty := @ and
Ky := 9.

By Lemma 2, for any n € {1, ,T} and m € {1,...,K}, r, and oy, are complements to each
other in the assignment game with value matrix A_4 I That is, for any n € {1, ..., T } and

me{1,.., K},

7L717_K77L

V*(A_’]T‘7L71’_Km71) o V*(A_Tny_Kmfl) + V*(A_’]T‘7L71’_Km71) o V*(A_Tnfly_Km)

S V*(A_'ﬂ‘n717_Km71) o V*(A_T'm_Km)'

By rearranging the above inequality, we obtain

V*(A_Tnfly_K ) o V*(A_Tny_Kmfl) é V*(A_Tnfly_Km) o V*(A_Tn,_Km)

m—1

The remainder of the proof of part (v) is analogous to the proof of part (ii) starting after (17). B

Proof of Theorem 1: Lemma 4 establishes that (8) implies (2), and the example given prior to
Proposition 1 shows that it is satisfied strictly for some types. Thus, it remains to show that (8)

holds for any unit constituent-object assignment game with value matrix A.
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Let L* be an optimal matching of A such that

(1) >, cpuglro =1 for all o € O, and

(ii) I, = 0 for all pairs (r,0) such that r € Ss and 0 € Oy where s,5' € S with s # 5.

An optimal matching satisfying (i) and (ii) always exists: An optimal matching satisfying (i),
which states no object is left unmatched, always exists because objects are on the short side and
the elements of A are nonnegative. Moreover, by Definition 1, a,, = 0 if r € S, and 0 € Oy
with s # s’. Consequently, one can always find an optimal matching that only matches seller unit
constituents with objects that belong to their seller’s potential set, as required by (ii).

For all 0 € O, let s(0) € S be the seller that is able to produce object o (i.e., 0 € Oy()), and let
7*(0) € BU {s(0)} be the unit constituent that L* matches with object o. Then L (0),0 = 1 for all
o€ O and [, =0 for all (r,0) with 7 # r*(0). It follows that

VAA) = YD B tro =Y ()0
UG 0€0 0€0

Let Oy := {0 € Oy | r*(0) € B} be the subset of objects in seller s’s potential set that are
matched to a buyer unit constituent. Then Oy \@s represents the set of objects matched to unit
constituents of s. Let O := UyesO, = {0 € O | 7*(0) € B} be the set of objects matched to a unit
constituent of a buyer.

Lemma 2 implies that the marginal product of each unit constituent and each object exceeds
the marginal product generated by the pair. This implies that:

STV (A) ~ V(A pe0) + VE(A) = V(A 0] = IV (A) = V(A0 (20)
o€ o€

Because o and 7*(0) are optimally matched together, removing that pair does not affect the rest
of the assignment game. Consequently, its marginal product is V*(A4) — V*(A_+(0),—0) = @p=(0),0,
and the right side of (20) is equal to Y _5 @« (0),0-

Notice next that
D IVHA) = VA, )] = D _[VH(A) = VH(A;)]
0cD beB
because each object in O is matched to a buyer unit constituent and each one of the latter is either

unmatched or matched to an object in 0. By part (ii) of Lemma 5, for any b € B we have

VAA) = VHA g )= ) [VHA) - V(A )L

g0

BE@(,
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while part (iv) of Lemma 5 implies for any s € S

VHA) = VA )2 Y [VH(A) = VHA L))

06@3

Adding up these terms over the buyers and sellers yields

D IVHA) = VHAg, )] =D [VHA) - VHA)]

beB beB
and Y [VH(A) VA _5)] =D [VH(A) - VA )]
€S 0cO

Using these results along with (20) yields
DVHA) = VA, N+ D VA VA 512D ar(o)0 (21)
beB s€S 0

Removing unit constituents cannot increase the value created by an assignment game, that is,

V(A _5,) 2 V*(A_g _g,)- Combined with (21), this yields

D_VHA) = VHAg I+ D VA = VIAg, 512 ) are (22)

beB sES 0cO

We next look at the marginal product of objects in O \ 0. Each object in O \ O, is matched
to a unit constituent of s, and each unit constituent of s is either unmatched or matched to an
object in Qg \ @8. Therefore for any s € S, removing Ss and Oy \ @8 implies that unmatched unit

constituents and matched pairs are removed. Hence, for all s € S,

VAA) = VHAs _g05.) = Z (o) 0-

06@5\6)5
Using this result in conjunction with (22) yields
STIVHA) - VA, T+ [V* Vi(Ag, _5) +V(A) - Vi(As _o.5.)
beB s€S
> Z Qr*(0),0
ocO

We now invoke part (iii) of Lemma 5 to obtain, for all s € S,

VAA) = V(A o) 2 V(A = V(A )+ VA -V (A 5.5

and thus

D IVHA) = VA N+ VA = V(A o)l 2D ar

beB seS oc0
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Observe finally that all objects in @ are matched to a unit constituent in BUS and all unit
constituents in B U S are either unmatched or matched to an object in 0. Removing BUS and O
means removing matched pairs and unmatched unit constituents so

VI (A) = V(A 55 o) Za *(0),0°

00

Combining the last two results yields (8), which completes the proof. B

Proof of Proposition 2: (If) Suppose that the allocation problem is such that all buyers and
all sellers are decomposable. Then it is possible to construct a (BO + O) x O matrix A such that

the rows devoted to unit constituents of each agent are those of his decomposition. That is,

At

Ab2

Abs

Abs

A=12 0 0 . o |’

0 A2 0 -~ 0
0 0 As ... 0
0 0 0 - A

where A is the decomposition of the i-th buyer and A% the decomposition of the j-th seller.
Observe that A satisfies Definition 1 by construction. Consider a feasible allocation x and recall
that L(A, x) is the set of feasible matchings of A that are isomorphic to z. Notice that the elements
of L(A,z) only differ in the way they assign objects across unit constituents of the same agent.
A best isomorphic matching of x in A, L*, is one that, for each buyer b assigns the objects in z
to unit constituents in By optimally and for each seller s assigns the objects in Oy \ x5 to unit
constituents in §8 optimally. (If this were not the case, then another isomorphic matching would
exist that produces a larger value, contradicting that L* is a best isomorphic matching.) This

implies the first equality sign in each of the following two lines:

=D ) ane=> Y li,an, forallbeB  and

TGBb OECL‘b TGBb OE@
f o)=Y Faae =3 Y Eya,  forallses
reSs 0€0s\xs re§, 0€0
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On both lines, the second equality sign derives from the fact that L® is isomorphic to x, which
means (i) [y, = 0 for all r € By and o € O such that o ¢ x; and (ii) l7,=0forallre Ssand 0o € O
such that o ¢ Oy \ x.

Because this is true for any feasible allocation, it also holds for the empty allocation z° and its

best isomorphic matching L

VA Z eroaro—zzlﬁo@ar,o for all s € S.

T6§s 0€0g regs o€

Combining these results with the assumption that all agents are decomposable yields

up(p, vp) = V*( Ab = Z Zl ro forall be B and

T’EB[) 00

ks(zs,c5) = V*(A%) — Do) Z Z — 17 5 ] for all s € S.

TESS 0c0

That is, Definition 2 is satisfied, and so the allocation problem is assignment representable.

(Only If) Suppose that a buyer b is not decomposable. Then for any matrix A’ with O unit
constituents of b in its rows and O objects in its columns, there exists a feasible allocation x such
that uy(xp, vp) # V*(Ag,b). Additionally, for any (BO 4 O) x O unit constituent-object assignment
game A in which the unit constituents of b are represented by the rows of A’ a best isomorphic

matching L* of x, optimally assigns objects in x; to unit constituents of b. That is,

SN Eane =Y S 1 an, = VI(AL) # wylap, vy).

rek, o0 reB, °€%o
Consequently, the allocation problem is not assignment representable.

Likewise, if a seller s is not decomposable, then for any O x O matrix A® there exists a feasible
allocation z such that ks(zs,cs) # V*(A%) — V*(Ag, \z,)- Additionally, for any (BO+ 0) x O unit
constituent-object assignment game A in which the unit constituents of s are represented by the
rows of A%, L*, a best isomorphic matching of x, optimally assigns objects in Qg \ x5 to unit
constituents of s. That is,

Do e learo= Y Y Hotro=d . Y. Heane=VI(A)=V (A \,,) # ki, c).
re§, 0€0 re§, 0€0s reS, 0€0s\xs

Thus, the allocation problem is not assignment representable. B
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Proof of Theorem 2: (Buyers) Let b be a buyer whose utility function exhibits SDD. Then, there
exists a partition {Op, }22_; of O such that O, = {0(1)(Om), 02)(Om), -, 0(0,,)(Om) } for all m €
{1,..., M}. For any package = € P, recall that z,, := 2N Oy, and let vy (zm) := up({0g)(Tm)}, vb)
be the i-th highest stand-alone utility among objects in ,,. For all m € {1,..., M}, define

U(l)(@m) U(2) (Om) U(Om)(@m)
Am o max{v(l)(@)m) - 6m727 O} max{v(2) (@m) - 6m727 O} max{v(om)(@)m) - 6m727 O}
max{v1)(Om) = 0m,0,0} max{ve)(On) = 0m0,0} ... max{v,,)(Omn) = dmo0,0}
and let
A™ 0 e 0
0 A™ 0
A=
0 0 . AT

We prove that b is decomposable by showing that A constitutes a decomposition of b. Because all
other elements are zeroes, for any x € P, the value of A, (which as may be recalled is the sub-
matrix of A containing exclusively its columns related to objects in x) is maximized by separately

maximizing the values of all submatrices A} . That is,

M
Vi(4e) = Y VAL,
m=1

In order to complete the proof, it remains to show that

|[Zm|
VAL ) = Z max{uy({0(;) (Tm)}, Vp) — Om,i, 0 forallm e {1,...,M} and all z € P.
i=1
For some m € {1,..., M} and some z € P, consider
v(l)(xm) 'U(2) (a:m) U(|mm\)(xm)
max{v(l)(xm) — 0,2, 0} max{v(2) (Tm) — Om2,0} .. max{v(‘xmn(xm) — 0,2, 0}
Am = : : :
m max{v(l)(xm) - 5m,\xm\7 0} max{v(g) (.’L’m) - 6m,|mm|7 0} max{v(um‘)(xm) - 5m,\xm\7 0}
max{v(l)(a:m) — 0m,0,,0} max{v(2) (Tm) — Om,0m,0} ... max{v(‘xmn(a:m) — 0m,0pm> 0}

Because the discount parameters are nondecreasing (6, < 0, j for i < j), the last O — |x,,| rows
of A,,, are optimally unmatched. Additionally, the max function implies that, for i = 1, ..., |2/,
the i-th row of A7’ is optimally matched to the i-th column. In this way, the highest value is

matched to the lowest discount, then the second-highest value with the second-lowest discount,
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and so on as long as the next value is greater than or equal to the next discount. It is easy to see
that this is optimal once one notices that the problem is isomorphic to the problem of a Walrasian
auctioneer facing unit demand buyers with values v(y)(Tm), -+, V(|z,,|)(Tm) and unit supply sellers

with costs dy.1, ..., 0m,0,,- It follows that

[zm]| [zm|

V(AL ) = Z max{v(i) (Tm) — Om,i, 0} = Z max{ub({o(i) (®m)}s Vp) = Om.i, 0}).
i=1 =1

(Sellers) Let s be a seller whose cost function exhibits SDD. Then there exists a partition
{@mvs}%le of O such that O, s = {0(1)((0),”,5), 0(2) (Om,s)s - O(Om,s)(@mvs)} forallm e {1,...,M}.
For any package = € Ps, recall that z,, := 2 N Op, s and let kg (zm) = ks({og)(m)}, cs) be the

i-th lowest stand-alone cost among objects in x,,. For all m € {1,..., M}, define
k(l)(@m) k(2) ((O)m) k(Om)(@m)
A k(l)(@m) + 5m,2 k(Q) (@m) + (5m72 k(Om)(@m) — 5m,2
k1) Om) = dmo k2 (Om) —6mo - k0,)(Om) =m0
and let
A™ 0 0
0 Am 0
A= .
0 0 AM

For any m € {1,..., M}, consider

k(l)((@m \ T) k(2) (Om \ zm) k(Om—|mm\)(©m \ )
A B k(l)((@m \ ij) + 5m,2 k(2) (@m \ ij) + 5m,2 k(Om—\xm\)(@m \ .’L’m) — 6m,2
Om,s\zm — : : . :
k(l) (Om \ o) + 5m70m,s k(2) (Om \ 7m) + 5m70m,s k(Om—\xm\)(@m \ o) + 5m,0m,s

the matrix formed by removing all columns related to an object in z,, from A™. Because the
discount parameters are nondecreasing (8,,; < 0, ; for i < j), the first |z,,| rows of Agms\xm

optimally remain unmatched. Any assignment that matches each of the remaining Oy, s — |2y

rows to one of the Oy, s — |z,| columns produces the same value and is therefore optimal. It follows

that
Om_‘xm‘ Om
V*(Agm,s\:vm) = Z k(i) Om\em) T Z dm,i forallme {1,...,M} and all x € Ps.
i=1 i=|zm+1|
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Because all other elements are zeroes, for any = € P, the value of Ag,\, is maximized by separately

maximizing the values of all submatrices Ag R, That is,

M Om
V*(A@S\m) = Z V*( 8m,s\xm) = Z Z k(i)(([))m\mm) + Z 5m,i for all x € P;.
m=1

m=1 i=1 i=| T |+1

It follows that, for all z € Py,

M [On Om Om—|Tm| o
VHA) =V (Aooe) = 3 Y keyom + Y Gmi — Z ko) — > Omi
m=1 | i=1 i=1 i=|zm|+1
M ‘xm‘
=3 [k (@m) + O]
m=1 i=1
M |zm|
= > Y lko{ogs) (@m)}, €) + O
m=1 i=1
= ks(z,cs). N

Proof of Part (ii) of Proposition 3: Suppose an agent is decomposable. Then given the agent’s
type, there exists a decomposition A. For any package z € P with nonempty, disjoint subsets y

and z, part (iii) of Lemma 5 implies that,
VHA) = VA ) + VH(A) = VH(A ) < VH(A) = VHA o), (23)

where A := A, (the matrix containing only those columns of A that correspond to an object in z),
and that
VHA) = VHA )+ VHA) = VA ) S VHA) = VHA o), (24)

where A := A\ (2\(yuz)) (the matrix containing all columns of A that corresponds to objects that
either are in y Uz or that are not in x). If the agent is buyer b with type v}, then (23) is equivalent
to

up(z, vp) — up(z \ y, vp) +up(z, vp) — up(x \ 2, vp) < upx, vp) —up(z \ (y U 2),vp),

which implies that buyer b has substitutes payoffs. If the agent is seller s with type cs, then (24)

is equivalent to
—ks(2\ (yU2),¢5) +ks(x\ 2,¢5) = ks(2\ (YU 2),¢5) +hs(2\ y,¢5) < —ks(z\ (yU2),¢5) +ks(z, ¢5),
which is in turn equivalent to

ks(x,cs) — ks(x \ y,cs) + ks(x,cs) — ks(x \ 2,¢5) > ks(x,c5) — ks(x\ (y U 2),cs),
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which implies that seller s has substitutes payoffs. B

As mentioned in footnote 32, the following lemma shows that restricting the number of unit
constituents into which a buyer is decomposed to the total number of objects and restricting the
number of unit constituents into which a seller is decomposed to the number of objects in his

potential set is without loss of generality.

Lemma 6 A buyer b who can be decomposed into any number of unit constituents can also be
decomposed into O unit constituents. A seller s who can be decomposed into any number of unit

constituents can also be decomposed into Os unit constituents.

Proof of Lemma 6: Consider a buyer b and a set of objects Q. Let A? be a decomposition of b
containing any number of rows. By, is the set of unit constituents of b, each represented as a row
of Ab. Therefore, Ab has By = |Bb| rows and O columns. We need to show that for any number
By, there exists an O x O matrix that constitutes a decomposition of b. The case for a seller is
analogous except that the decomposition only has O4 columns. Hence, we only prove the lemma
for a buyer.

If By, < O, then it is possible to add O — By, rows of zeroes without changing the problem, so
any buyer who can be decomposed into B, < O unit constituents can also be decomposed into O
unit constituents.

If B, > O, then objects are on the short side and any optimal matching will leave at least
Bb — O unit constituents unmatched. Let I@%g - I@%b be a subset containing Bb — O unit constituents

denote the submatrix of Ab

/

that are unmatched in an optimal matching of A®. Let A’ := Ab B
.

where the rows corresponding to unit constituents in B} have been removed. Because AP contains

O rows, the proof is complete if the following can be shown:
V*(AL ) =V*(AL,) forall m, €P.

By part (v) of Lemma 5, any subset of unit constituents and any subset of objects are comple-
ments to each other in assignment game A°. Because Bg C By and O \ zp C O for any x € P, part

(v) of Lemma 5 implies
%/ Ab %/ b x( Ab x( Ab *( Ab *( Ab
VIHAY) = VHAY) + VHAY) = VT(Ay,) = VI(AY) = VH(4,),

which is equivalent to

VA = VHAY) 2 VEAL) - VAL,

49



Because the unit constituents in Iﬁ%g are optimally unmatched in A%, V*(A%) = V*(A?) and the left
side of the above inequality is equal to zero. Because removing rows always weakly reduces the
value of an assignment game, the right side is also equal to zero. It follows that V*(Ag,b) = V*(flg,b)

for all z; € P, and the proof is complete. B
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