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Abstract

Regulation is very persistent, even when inefficient. We propose an explanation for

regulatory persistence based on regulatory fog, the phenomenon by which regulation

obscures information regarding the value of counterfactual policies. We construct a

dynamic model of regulation in which the underlying need for regulation varies stochas-

tically, and regulation undermines the social planner’s ability to observe the state of

the world. Compared to a full-information benchmark, regulation is highly persistent,

often lasting indefinitely. Regulatory fog is robust to a broad range of partially infor-

mative policies and can be quite detrimental to social welfare. Regulatory experiments,

modeled as costly and imperfect signals of the underlying state, do not eliminate the

effects of regulatory fog. We characterize their effects and provide a framework for

choosing amongst a set of potential regulatory experiments.
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Better the devil you know than the devil you don’t. - R. Taverner, 1539

1 Introduction

Many policies, particularly regulatory policies, alter what can be learned from observing

the environment. A policy which successfully deters fraud, for instance, makes unscrupulous

businessmen act like honest ones; price controls limit the ability of regulators to observe the

consequences of more laissez-faire alternatives; and blanket ordinances limit the ability of

individuals to express heterogeneous preferences. The objective of this paper is to explore

the consequences of policies that, when put into place today, impact the information which

can be used to select the policies tomorrow; what we refer to as regulatory fog.

Regulation in our model is a policy that pools or constrains different types into the same

(second-best) action so that the state is unobservable. In contrast to many regulatory policies

that can generate information, this type of regulation eliminates or distorts information about

the state of the world. We believe that many regulations have this character, especially those

such as simple price regulation, entry restrictions, and quotas that are very common and

often designed without considering the informational consequences. Our main interest is in

understanding the dynamics of optimal policy in cases where some policies reduce what can

be learned about the underlying environment.

We study an infinite-horizon model with two Markovian states. In each period, a benevo-

lent social planner has the option to regulate or not to regulate. Regulating is optimal in the

bad state while not regulating is optimal in the good state. Regulatory fog arises because

regulation put into place obscures the underlying state, whereas with no regulation, the state

is observed. Therefore, at each point in time the planner faces a tradeoff between the benefit

of the policy and the information this policy generates for future decision making.

We show that the slow and imperfect update process associated with regulatory fog can

have significant consequences on the adaptability of policy and on welfare, relative to a

full-information benchmark where both policies are informative. As regulation eliminates

information about the underlying state, beliefs adjust monotonically toward the stationary

distribution over time. As beliefs at this stationary distribution are often pessimistic, re-

moving regulation has a high potential of leading to a deregulatory disaster. The potential

of these disasters often swamp the positive informational advantages of removing regulation.

For reasonable parameter values regulatory fog increases both the duration of an individual

regulatory spell and the overall proportion of time spent under regulation. In cases where

the planner is impatient, regulation may become permanent regardless of the persistence of
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the underlying state.

Our baseline model reveals costs to regulatory policy that are not often taken into ac-

count in the debate over optimal policy but which are consistent with a number of empirical

regularities that are difficult to rationalize with extant theory. First, due to an incentive to

delay deregulation until the planner is reasonably sure that it will be successful, our model

predicts large expected returns when detrimental regulation is finally lifted. This result is

consistent with the estimated gains from deregulation of many network industries, includ-

ing transportation, power, communications, and even banking.1 Second, as deregulation is

fraught with uncertainty, our model predicts that the removal of regulation can sometimes

end in disaster, since it’s a gamble every time.

One response to regulatory fog is to consider other sources of information. In many cases

a planner can implement a range of smaller scale policy experiments or gain information

exogenously from the actions or experiments of others. We model these “policy experiments”

under the assumption that they are less risky than full deregulation but provide a weaker

signal about the underlying state.2 Using this framework we characterize the planner’s

induced preferences over regulatory experiments, including the optimal trade-off between

costliness and effectiveness. We show that while policy experiments weakly reduce regulatory

persistence, their value is non-linear in their effectiveness.3 This non-linearity reduces the

value of imprecise signals and implies that experimentation is likely only when the experiment

is informative and low cost. Our model suggests that many policy makers may optimally wait

for external information to demonstrate the effects of deregulation rather than experiment on

their own. Such “demonstration effects” are a feature of historical deregulation initiatives,

as discussed below.

The difficulty in finding direct empirical evidence of regulation sustained by regulatory fog

is self-evident. However, the role that external information shocks have played in historical

deregulation suggests that a lack of information is a major deterrent to deregulation. The

persistence of entry, price, and route regulation under the Civil Aeronautics Board (CAB)

provides a useful example of this phenomenon. The CAB managed nearly every aspect of

the airline industry, including fare levels, number of flights per route, entry into routes,

1See, for example Moore (1988), Winston, Corsi, Grimm and Evans (1990), Peltzman and Winston (2000),
and Joskow (2006).

2For example, an energy regulator may initially introduce competition for large commercial firms as a way
to understand the potential benefits of broader deregulation. Such partial deregulation requires additional
overhead and legal support but also generates partially informative information about the outcome of broader
commercial and residential deregulation.

3Holding the cost of policy experiments fixed, a slight improvement in the informativeness of a policy
which is initially uninformative yields little return to the policy maker. Vice versa, a slight improvement in
the informativeness of a policy which is highly informative has a very large return to the policy maker.
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entry into the industry and safety procedures from 1938 - 1978.4 Initially growing out the

government’s desire to regulate the pricing of air mail service, the CAB rules regulating

passenger transport predate any substantial market for air travel. Despite the fact that the

market for air travel essential grew to maturity under the umbrella of the CAB, the longevity

of the regulatory body remains mysterious: the CAB generated an extremely inefficient set of

economic regulations, as became apparent on their removal in 1978.5 How did such inefficient

regulation persist, and why did it end when it did?

Critical to airline deregulation was the growth in intra-state flights, especially in Texas

and California, because they revealed information about the likely effects of deregulation.

These intra-state flights, and the local carriers who worked them, were not subject to regu-

lation under CAB, so they gave consumers a window into what might happen if regulation

was dropped more generally. A series of influential studies starting from Levine (1965) and

continued and expanded by Jordan (1970) demonstrated that fares between San Francisco

and Los Angeles were less than half the cost of those between Boston and Washington, D.C.,

despite the trips being comparable distances. Similar results were observed when looking at

flights within Texas. There was also no discernable increase in riskiness, delay, or evidence

of so-called “excessive competition.”

The dissemination of these large-state market results proved to be a major catalyst for

deregulation.6 The proximate driver of deregulation was a series of hearings held in 1975 by

the Subcommittee on Administrative Practice and Procedure of the Senate Committee on the

Judiciary (the so-called Kennedy Hearings). An entire day of testimony at these hearings

was dedicated to exploring the comparison of intra-state and inter-state flights. William

Jordan testified extensively, explaining and defending the results of the deregulatory studies.

The successful deregulation of airlines opened the door for deregulation in other related

industries. The architect of the CAB deregulation, Alfred Kahn, cited the importance of

the “demonstration effect,” provided by airline deregulation, in understanding subsequent

deregulation of trucking and railroads (Peltzman, Levine and Noll 1989). Likewise, the US

experiment spurred airline deregulation overseas (Barrett 2008).

Consistent with our model of regulatory fog, a glimpse of the unregulated intra-state

market provided regulators with new information about the underlying environment, which

4For an extensive review of the CAB’s powers and practices, see “Oversight of Civil Aeronautics Board
practices and procedures : hearings before the Subcommittee on Administrative Practice and Procedure of
the Committee on the Judiciary”, United States Senate, Ninety-fourth Congress, First session (1975).

5For an analysis of the economic effects of airline deregulation, see Morrison and Winston (1995) and
Morrison (2007).

6Derthick and Quirk (1985) lay out the politics and timing of the push for deregulation, and cite these
academic studies as the primary “ammunition” for those in favor of deregulation, as have others who have
investigated the issue. See, for example, Bailey (1980) and Panzar (1980).
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in turn spurred a successful deregulation of the airlines. The success of airline deregulation

provided information which prompted deregulation in related industries.7

Finally, as our model would predict, deregulation often generates new information re-

garding the underlying primitives of an industry, as seen by the numerous academic studies

which use the after-effects of deregulation to understand the composition of the industry.

In addition to the long literature of airlines cited above, significant empirical analysis has

occurred after the deregulation of trucking (Rose 1985), railroads (Boyer 1987), and cable

television (Rubinovitz 1993), to cite just a few examples.

1.1 Related Literature

While we know of no paper which explicitly studies regulatory fog, our paper contributes

to a broader literature interested in the causes of policy persistence. The dominant theory

of policy persistence is political, in which rent seeking by entrenched groups is the primary

force. Coate and Morris (1999) develop a model in which individuals make investments in

order to benefit from a particular policy. Once these investments are made, the entrenched

firms have an increased incentive to pressure the politician or regulator into maintaining the

status quo. Similar dynamics can be found in Brainard and Verdier (1994), which studies

political influence in an industry with declining infant industry protection.

As these models have no role for incomplete information, they have a hard time explaining

the specific dynamics of regulation and deregulation. For us, one of the key features that

distinguishes regulation from other policies is that it forces agents to take certain actions

(or proscribes certain actions), and so generates similar signals in different states of nature.

Contrast, for instance, the persistence of the CAB regulation to the huge variation in the

US tax code over the same period (Piketty and Saez 2007). This effect is the essence of

regulatory fog.

Asymmetric information has been combined with rent seeking models by Fernandez and

Rodrik (1991). In their paper, uncertainty concerning the distribution of gains and losses of

new legislation leads to lukewarm support by potential beneficiaries. Since uncertainty alters

voting preferences in favor of the status quo, efficiency-enhancing legislation is often blocked

by incumbents. In their model it is the aggregation of uncertainty across consumers which

leads to persistence. By contrast, we find persistence naturally arising even in situations

where a single planner maximizes social welfare. A recent paper by Friedrich (2012) also

7Given the Global Financial Crisis, some may argue that the deregulation wave went too far. Notice,
however, that catastrophic deregulation failures are characteristic of regulatory fog. The inability to observe
the counterfactual inevitably leads regulators to remove some regulation which is socially beneficial.
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has a capture story, but with an interesting twist. In his model, negative net-present-value

policies are continued, even by non-captured policymakers, in order to induce the advocates

of positive net-present-value policies to put forth the costly effort to bring those projects to

light. Captured policymakers can then use these good-intentioned policy extensions to hide

their capture. Our model has no such incentive problem, yet still delivers persistence of bad

policy from a non-captured social-planner.

A second extant explanation for policy persistence is that investment by firms leads to

high or infinite transaction costs for changing policy. Pindyck (2000) calculates the optimal

timing of environmental regulation in the presence of uncertain future outcomes and two

sorts of irreversible action: sunk costs of environmental regulation and sunk benefits of

avoided environmental degradation. Just as in our model, there are information benefits

from being in an environment without regulation, and a social-welfare maximizing planner

takes these benefits into account when designing a regulatory regime. Zhao and Kling (2003)

extends this model to allow for costly changes in regulatory policy. Transaction costs act to

slow changes in regulation, thereby creating a friction-based policy inertia. In our model,

policy inertia is generated endogenously by the information that policies produce about the

underlying state of the world. We attribute inaction by policy makers to their desire to wait

for the environment to improve, which reduces the cost of experimentation and drives up

the value of information.

While not directly related to policy persistence, our notion of regulatory fog is similar

to parallel research being done in the context of social learning. Jehiel and Newman (2011)

study an intergenerational environment in which contracts put into place today limit the

observation of potentially detrimental actions in the future. As principals are replaced each

generation, the suppression of information from past contracts leads to the existence of

loopholes where contracts offered by future principals are exploited by unconstrained agents.

While our model reveals that inefficient policies can be generated in a dynamic setting with

perfect recall, their model shows that similar properties can hold in a static environment

when policy makers have limited recall.8 Peck and Yang (2010) study information flows

in an environment with social learning and investment flows which change according to an

underlying Markov process. Their model reveals that the ability of agents to delay action

until they observe the actions of others can lead to asymmetric investment cycles. While we

do not explicitly discuss the case of multiple jurisdictions, the persistence of policies which

eliminate information are similarly exacerbated in our framework when multiple jurisdictions

and social learning are introduced. Finally, our model shares some features with Ichino and

8For other models of policy persistence with nearly-myopic policy markers see Berentsen, Bruegger and
Loertscher (2008) and McLennan (1984).
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Muehlheusser (2008), which examines the optimal oversight of a subordinate whose type is

unknown. As in our model, there is a trade-off between information acquisition and short-run

incentives.

In the next section, we lay out the basic model, and solve for the optimal regulatory

policy under both the full-information benchmark and a simple incomplete information en-

vironment. In section 3, we compare the results of these two models to illustrate the effects

of regulatory fog on persistence and welfare. In section 4, we expand the policy space and

evaluate small-scale deregulatory experiments with intermediate information consequences.

Section 5 concludes.

2 Model

Consider an economy which is home to a large number of consumers and producers, both

potential and actual, and a welfare-maximizing social planner who lives forever and is risk

and loss neutral.

There are two possible states of the world, good (G) and bad (B). In the good state, the

free-market equilibrium is efficient, delivering some level of social welfare, which we normalize

to zero. In the bad state, some imperfection inhibits efficiency in the free-market equilibrium.

There are many ways to think about this imperfection: technology has shifted in a way that

gives rise to a natural monopolist; a new mode of production has been invented which is

profitable but involves a pollution externality; or network characteristics of the product are

improved with standardization. Regardless of the origin of the imperfection, society suffers

a deadweight loss when the free market reigns in the bad state that we normalize to −1.

No individual member of society knows the underlying state, including the planner. Rather,

each responds to his localized incentives, which may be quite idiosyncratic, and the state

only becomes apparent when the market outcome is observed.

The planner can enforce a regulation that eliminates the deadweight loss arising from the

imperfection, (R ∈ {0, 1}), where regulation entails its own economic cost −d. This regula-

tion might be the establishment of a price-capped regulated monopoly, a cap on pollution

output enforced with auditing and fines, or a blanket ordinance eliminating discretion. We

assume that 1 > d and thus the planner will prefer to pay the cost of regulation rather than

simply accept the loss from having an unregulated market in the bad state. We also assume

that the cost of regulation does not depend on the underlying state, so the total welfare

under regulation is −d, regardless of the state. The planner has a discount factor of δ, and
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will regulate if indifferent.9

Transitions between the two states follow a Markov process where ρij represents the

probability of transitioning to state j from state i between two periods. Both the good and

the bad states are persistent with ρBB ∈ (.5, 1) and ρGG ∈ (.5, 1). The transition probabilities

are known to the planner.

The timing of the model is as follows: at the beginning of every period, the planner

chooses the policy environment R. Next, nature chooses the state according to the proba-

bilities above.10 Finally, the market responds to the policy choice and the state.

The per-period value to the planner for regulating and not regulating in each state is

given by:

(1)

Good State Bad State

Regulation −d −d
No Regulation 0 −1

.

While the planner would prefer to regulate in the bad state and to not regulate in the

good state, the current period’s regulation decision alters the information available to the

planner for future decisions. Under regulation the planner gains no new information about

the underlying state, as both states look identical, and simply updates according to the

transition probabilities and her prior belief. In the absence of regulation, she learns the

state for certain, since if the state is bad, imperfections will arise and lower social welfare.11

This difference in information generated by different policy choices is the information cost

we explore throughout the paper.

In the base model, we make the information effect of regulation extremely stark, since

the key intuitions are apparent in that setting. In reality, some information about the

9We assume here that the planner is strictly publicly-interested. Allowing for some degree of interest-group
oriented regulation in the spirit of Stigler (1971) or Grossman and Helpman (1994), does not substantively
change the underlying persistence we are exploring. While the particulars of the planner’s objective function
will affect the relative value of different states and the interpretation of actions, the impact of regulatory fog
on regulation and efficiency are quite similar.

10Note the difference between this model and the K-arm bandits originally developed by Robbins (1952).
A distinguishing feature of bandit problems is that the distribution of returns from one arm only changes
when that arm is chosen. This feature implies that the distribution of returns does not depend explicitly
on calendar time and there is no new information being generated about other actions. By contrast, a
fundamental decision in our model is the potential improvement of alternative actions through waiting. See
Bergemann and Välimäki (2006) for a discussion of bandits.

11We realize that deregulation is, in reality, a slow process, the full consequences of which take can take
many years to ascertain (Winston 1998). We make the simplest assumption of immediate revelation in order
to make the contrast of interest, between regulatory fog and the full-information benchmark, as transparent
as possible. Since the assumption about the consequences of deregulation will be held fixed across all these
comparisons, we chose simplicity over realism in this dimension of our model.
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state is available even under regulation, but less extreme informational differences generate

substantively similar results. We consider the case where some information about the state

is revealed under regulation in section 4.

In the next two subsections, we solve for the planner’s optimal policy choice in two

environments. First, we will consider the optimal way to set a benchmark policy that, unlike

regulation, does not affect the observability of the state of the world. Next, we will consider

regulation as described above. Our goals are to contrast the planner’s choices with these two

types of policy, derive the implied difference in policy persistence, and calculate the welfare

consequences of regulatory fog. We are not trying to compare regulation to deregulation,

but rather to contrast the two activist policies, one with regulatory fog and one without.

2.1 Full Information Benchmark

Before developing the optimal use of regulation, it is useful to consider the planner’s optimal

policy when information is unaffected by market intervention. For ease, we refer to policies

which do not affect information as non-regulatory policy interventions.

Consider a small change to the model above, in which the planner observes the state at

the end of every period, regardless of the policy decision. We determine the optimal use

of non-regulatory interventions, and use this as a benchmark for identifying the effects of

regulatory fog.

As the planner knows the previous period’s state with certainty, the information environ-

ment is greatly simplified. If the state was good last period, the probability that the state is

bad this period is given by ρGB < 0.5. Likewise, if the state was bad the probability that the

state remains bad is ρBB > 0.5. The planner is not clairvoyant, as she does not observe the

state before she makes her policy decision for the period, but she does learn what the state

was at the end of the period, even if she chooses to intervene. The following proposition

characterizes the policy function of an optimal planner:

Proposition 1 Assume that the state is revealed at the end of each period. Then the plan-

ner’s optimal policy falls into one of the following cases:

1. If d ≤ ρGB, the planner intervenes every period.

2. If ρGB < d ≤ ρBB, the planner intervenes after the bad state and does not intervene

after the good state. Conditional on enactment, the length of a intervention follows a

geometric distribution with expected length 1/ρBG. The proportion of time spent with
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government intervention is given by the steady state probability of the Markov Process(
ρGB

ρGB+ρBG

)
.

3. If d > ρBB, the planner never intervenes.

Proof. All proofs in the appendix.

Proposition 1 identifies the key comparisons that drive the planner’s decision when reg-

ulatory fog is not a problem. Recall that d is the cost of intervening which scales between

zero and the cost incurred to society in the unregulated bad state, which we normalized to

-1. When d is small relative to the probability of transition to the bad state, the planner

will intervene in every period regardless of last period’s state. This permanent intervention

reflects the rather innocuous costs of intervention relative to the potential catastrophe of

being wrong.

Likewise, if the cost of intervention is very high relative to the cost of the unregulated-

market imperfections, the planner prefers to take her chances and hope that the underlying

state improves in the next period. The interventionist cure is, in expectation, worse than

the disease and leads to a laissez-faire policy.

The interesting case for our model is the range of intermediate costs for which the planner

finds it in her interest to adapt her policy to the information generated in the previous period.

In the full information case, the planner applies the policy which is optimal relative to the

state observed in the previous period. Except for the periods in which the state actually

transitions, the policy adopted by the planner will be ex post second-best efficient. Even in

this full-information environment, there is some policy persistence. If the planner intervenes

this period she is more likely to intervene next period, since the underlying state is persistent.

2.2 Optimal Regulation with Regulatory Fog

We now return to the base model and solve for the planner’s optimal policy when the

regulated state eliminates information. We construct this policy in three steps: we first

define the process by which the belief of being in the bad state is updated and construct the

value functions of regulating and not regulating as a function of that belief. Next, noting

the regularity in these value functions, we show that there is a unique cutoff belief for which

the planner switches from regulation to deregulation. We then use this insight to construct

the optimal policy function for the planner under regulatory fog.

Just as in the full-information benchmark, the planner’s decision to regulate and deregu-

late in each period is essential a tradeoff between (i) regulating today and suffering a certain
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payoff loss of −d or (ii) choosing not to regulate today and receiving either 0 or −1 depending

on the underlying state. As the value of the lottery is based on the likelihood of being in the

bad state, a planner’s decision to regulate will be guided by his belief regarding the state of

nature in each point in time.

Unlike the full-information benchmark, however, the evolution of this belief is guided by

the policy chosen in each period. A planner who does not regulate immediately learns the

state of nature and thus has beliefs which are very optimistic or pessimistic regarding next

period’s underlying state. A planner who regulates, by contrast, learns very little about

the underlying state of nature and updates her beliefs only in relation to the underlying

transition matrix. The removal of regulation generates information which is valuable to

the planner for future decisions. The tradeoff between the expected gains and losses of the

current period and the information gained by deregulation form the basis of decision making

for the planner over time.

Let ε be the belief of the planner that he is in the bad state today. Further, define an

updating function P → [0, 1] which maps the current belief into a posterior belief in the case

where regulation is imposed. Using the underlying transition matrix,

(2) P (ε) = ερBB + (1− ε)ρGB.

Let P k() represent k applications of this function, where negative numbers represent inver-

sions. Then for any starting ε ∈ [0, 1],

lim
k→∞

P k(ε) ≡ ε̃ =
ρGB

ρGB + ρBG
.

Further note that P (ε) is continuous and increasing in ε, P (ε) ≤ ε for ε ≥ ε̃, and P (ε) ≥ ε

for ε ≤ ε̃. These conditions imply that the uninformed planner updates over time toward

the steady state of the Markov process. This implies that the potential posteriors of no

regulation bracket the posterior of regulating.12

Let R(ε) ∈ {0, 1} represent the planner’s decision when she believes the state is bad with

probability ε, where R = 1 indicates regulation and R = 0 indicates no regulation. Let

V (R|ε) be the planner’s value function playing regulatory policy R with beliefs ε. Define

R∗(ε) as the maximizing policy function and V ∗(ε) as the value function induced by it.

12In the language of informational decision analysis, one posterior brackets another if for any signal,
all posteriors of one information system can be written as a linear combination of the posteriors of the
other information system with linear weights less than one. Bracketing ensures that the expected value of
information from removing regulation is weakly positive. See Hirshleifer and Riley (1992).
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Given maximization in all subsequent periods for any belief ε,

V (R = 1|ε) = −d+ δV ∗(P (ε)),(3)

V (R = 0|ε) = ε[−1 + δV ∗(P (1))] + (1− ε)[δV ∗(P (0))].(4)

For notational simplicity, let VB ≡ V ∗(P (1)) and VG ≡ V ∗(P (0)). VB represents the value

function after observing a bad state while VG represents the value function after observing

a good state.

A useful way of interpreting these value functions is by taking their difference. Define

(5) G(ε) = V (R = 1|ε)− V (R = 0|ε)

as the difference in value between regulation and deregulation given beliefs ε. Substituting

from (3) and (4) in equation (5) yields:

G(ε) = ε− d︸ ︷︷ ︸
Expected
Cost of

Deregulation

− δ[εVB + (1− ε)VG − V ∗(P (ε))]︸ ︷︷ ︸
Expected Value of Information

.

The first term represents the expected current period cost of deregulating, since the planner

will suffer the bad state with probability ε, but saves the cost of regulation (d). The second

term represents the value of information associated with learning the true state: instead of

having to work with a best guess of P (ε), the planner will know with certainty that she is

in the good or bad state and can act accordingly.

Figure 1 shows the current period cost of deregulation and the value of information over

the domain of ε. The expected cost of deregulation is linear; negative when ε = 0, and

positive at ε = 1. By contrast, the value of information is concave and equal to zero at both

endpoints. It follows directly that there exists a unique point where G(ε) = 0.

Proposition 2 There exists a unique cutoff belief ε∗ ∈ [0, 1] such that the optimal policy for

the planner is to regulate when ε > ε∗ and to not regulate when ε < ε∗.

In this dynamic setting, the value of information relates strongly to the static models of

Hirshleifer and Riley (1979) and Radner and Stiglitz (1984): information is most valuable

when the planner is least certain about the underlying state. At ε = 0 and ε = 1 the planner

knows the underlying state and thus learns no new information by deregulating. In these

cases, the value of information is zero. In the interior, the value of information is strictly
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The Optimal Regulation Regime

Cost of Deregulation1-d

Value of Information

0
*


1

-d

Figure 1: The cost and value of deregulation: Uniqueness of ε∗

positive and concave.13

Proposition 2 provides structure to the solution of the planner’s problem. Although

the optimal regulation decision is defined for any belief ε, only countably many (and often

finite) beliefs will arrive in equilibrium. Let ε∗ be the planner’s optimal cutoff as defined in

Proposition 2, and define k∗ as the unique k ∈ N∗ such that P k+1(1) ≤ ε∗ ≤ P k(1). We refer

to k∗ as the length of the regulatory spell. If there does not exist a k which satisfies this

condition, then k∗ =∞. This will be the case if and only if ε∗ ≤ ε̃.

As with the full information benchmark, our goal is to relate the proportion of time

spent under regulation to the cost of regulation d. As the length of regulatory spells (k∗) is

a weakly decreasing function of ε∗, it is useful to first determine how ε∗ changes with respect

to d.

Corollary 1 The threshold ε∗ is increasing in d.

The intuition for Corollary 1 can be seen in Figure 1. As d increases, the direct cost of

deregulation decreases. As a result, the cost curve shifts downward, which shifts ε∗ to the

13The cone-like shape is due to differences in the update operator for beliefs above and below ε∗. For
P (ε) < ε∗, a planner who does not deregulate this period will, optimally, deregulate in the next period. As
the value function for no regulation is linear, the value of information increases linearly in this region. For
P (ε) > ε∗ the planner has an incentive to maintain regulation for at least one period. The longer the delay
before deregulation, the lower the expected cost of deregulating. Thus, the value of information decreases
non-linearly in this domain due to the recursive nature of the updating operator P k().
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right. At the same time, an increase in d increases the cost of regulating, increasing the

difference in payoffs between regulating and deregulating in the good state. This additional

cost of regulation increases the value of information for all ε ∈ (0, 1) leading the value of

information curve to expand upward. As both of these effects makes G(ε) smaller, the overall

effect is an unambiguous increase in the deregulation cutoff.

As k∗ is a weakly decreasing function of ε∗ it follows:

Corollary 2 The length of a regulatory spell, k∗, is weakly decreasing in d.

Bringing these effects together, we can characterize the planner’s optimal policy choice.

Proposition 3 There exists a unique optimal policy function for the planner under regula-

tory fog. Let

(6) τ ≡

[
δ + 1−δ

ρGB+ρBG

]
1− δ[ε̃− ρGB]

> 1.

Once regulation is applied the first time the planner’s optimal policy falls into one of the

following cases:

1. If d ≤ ρGBτ : the planner always regulates.

2. If d > ρBB: the planner never regulates.

3. If ρGBτ < d ≤ ρBB: Let ε∗ be the solution to the implicit function:

(7) ε− d+ δ[εVB + (1− ε)VG − V ∗(P (ε))] = 0.

The planner regulates for k∗ > 0 periods after the bad state is revealed and does not

regulate after the good state is revealed, where k∗ is the first k such that P k+1(1) ≤
ε∗ ≤ P k(1).

The proof for this proposition is provided in the appendix, but the intuition is straightfor-

ward. Consider a planner that just experienced the bad state. She is at her most pessimistic

at the beginning of the subsequent period, believing the state is still bad with probability

ρBB. While regulating, the planner’s belief about the underlying state trend downward, since

P (ε) < ε. If the belief crosses the threshold defined in Proposition 2, she deregulates. If hav-

ing no regulation reveals a good state, she remains without regulation until she experiences

the bad state, at which point the process begins again.
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For very costly regulation, (d > ρBB), even the most pessimistic beliefs the planner will

ever have are not sufficient to justify regulation. For very low cost regulation (d < τρGB),

the most optimistic belief the planner ever has (ε̃, the steady state of the Markov process)

is not sufficiently rosy to justify the risk of deregulation. For intermediate costs, regulation

will progress in cycles.

Having characterized the planner’s strategy under regulatory fog, the next section com-

pares the optimal regulatory policy to that in the full-information benchmark and performs

a number of comparative-static exercises.

3 Comparison with Benchmark

Regulatory fog has two fundamental consequences in our model, and each affects both the

time under regulation and overall social welfare. First, once regulation is imposed, beliefs

under regulation always remain above ε̃. This contrasts markedly with the full-information

planner, who updates to the more optimistic ρGB after observing a good state, even while

regulating. A decision maker considering whether to deregulate is always faced with the

potential of a deregulatory disaster, wherein the removal of regulation in the bad state leads

to losses. The chance of this disaster is higher with regulatory fog, no matter how long the

planner waits, because it is bounded below by the steady state of the Markov process. This

potential for disaster can lead to permanent persistence, particularly in environments where

the decision maker is relatively impatient.

Second, the planner’s belief about the underlying state under regulation evolves smoothly

over time from a belief in which regulation is (almost) certainly optimal to a belief in

which there is a greater likelihood that regulation is inefficient. This contrasts to the full-

information planner whose beliefs bounce quickly from very optimistic to very pessimistic as

a function of the observed state. For most cases this process naturally leads to regulatory

inertia since delay (i) reduces the chance of deregulatory disasters and (ii) increases the value

of information from deregulating.

We will discuss these effects in turn.

3.1 Permanently Persistent Regulation

We begin by studying the range of parameters for which regulation persists indefinitely. As

with the full-information benchmark, regulation is fully persistent if the normalized cost is

low relative to the probability of transition from the good to the bad state. However, as the
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most optimistic beliefs that arrive in equilibrium are more pessimistic, deregulation carries

additional risk, which is represented by τ in Proposition 3. Since τ > 1, regulatory fog

strictly increases the set of parameters for which regulation persists permanently.

As τ is a decreasing function of the discount factor δ, impatient planners are more

affected by regulatory fog. Planners who discount the future completely ignore the value of

information from deregulation and are willing to deregulate only if the probability of being

in the bad state falls below the cost of regulation. Institutions that induce short-sighted

preferences by regulators, such as having short terms in office, are expected to lead to more

regulatory persistence. Consistent with this prediction, Smith (1982) finds that states with

legislators having longer terms are more likely to deregulate the licensure of professions while

Leaver (2009) shows that electricity regulators with longer terms will review and adjust

rates more frequently than their short-term counterparts.14 Our example involving CAB

deregulation is also consistent with this result: the initial push for deregulation came from

Senator Kennedy, a long-termed senator with a very safe seat. Kennedy’s secure tenure and

expected longevity implies that he would enjoy the fruits of a successful deregulation but

had limited personal costs if such deregulation failed.

Continuing with comparative statics, as the persistence of states increases, the effect of

regulatory fog becomes more pronounced. Consider a proportional decrease in ρBG and ρGB.

In the absence of regulatory fog, such a change decreases the range of costs for which per-

manently persistent policy occurs, since the observation of a good state this period becomes

a much better signal about that state being good tomorrow. In the case of regulatory fog,

such a change leaves the steady state ε̃ unaffected, but increases τ . The net effect on the cost

cutoff for permanently persistent regulation is ambiguous. However since τ grows as ρGB

falls, the gap between the full-information benchmark and regulatory fog unambiguously in-

creases. Empirically, this means we should expect to find examples of permanent persistence

induced by regulatory fog in instances where the underlying need for regulation changes quite

slowly, relative to the speed at which regulation can be changed, ceteris parabis. This might

mean, for example, that regulatory fog is less of an issue for a very new industry in which

the ebbs of flows of market power are still quite rapid, but more of an issue in an established

industry (such as airlines) in which the technological conditions that induce market power

change at a much slower pace.

Permanent regulation exists under regulatory fog even as the underlying states become

highly persistent. Figure 2 shows the region of permanent regulation both for the case of

discretely positive transition probabilities and for the case where ρBG and ρGB converge to

14For another example of technical and information constraints inducing myopic policy, see Aidt and Dutta
(2007). Both Leaver (2009) and Aidt and Dutta (2007) consider a very different mechanism than ours.
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zero, but where ε̃ ∈ (0, 1). In the full-information case, planners always have an incentive to

deregulate in the good state as ρBG and ρGB converge to zero. In the presence of regulatory

fog, however, the most optimistic belief achievable in equilibrium is ε̃, which may be quite

pessimistic in the limit. Referring back to Proposition 3, τρGB → 0 as ρGB → 0 if and

only if δ = 1. Otherwise it is bounded away from zero, and so for low costs, regulation will

persist indefinitely, even though one deregulatory episode could lead to the (near) permanent

removal of regulation.

The Optimal Regulation Regime
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Figure 2: Optimal policy under regulatory fog as a function of impatience (δ) and the cost
of regulation (d).

Finally, as illustrated by the CAB example in the introduction, there is a way to escape

from the world permanently persistent regulation. If some information arrives from outside

the system that leads the policymaker to update her beliefs, she could end up with beliefs

that are more optimistic than the ε∗, even when that cutoff is below steady-state belief. We

analyze the effects of the exogenous arrival of information in Section 4, below, as a special

case of experimentation.

3.2 Regulatory Cycles

When the costs of regulation d are moderate, regulatory policy is characterized by transitions

between regulation and deregulation, and these transitions are influenced by the underlying

state.
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As noted in Proposition 1, the transition from regulation to deregulation in the full

information benchmark is based on the arrival time of the first good event and thus there

is a direct relationship between persistence and the stochastic nature of the environment.

As arrival times follow a geometric distribution, the expected length of a regulatory spell

is 1
ρBG

, and the expected time under regulation is equal to the steady state probability ε̃.

Furthermore, for d ∈ (ρGB, ρBB), there is no relation between the cost of regulation and its

persistence.

Unlike the full information case, regulatory fog is characterized by (often long) fixed

periods of regulation followed by deregulation. Deregulation lasts until the arrival of the

first bad event, at which point the regulatory cycle repeats. The overall effect of these

cycles on policy can best be seen by plotting the proportion of time spent in regulation and

deregulation as a function of d. As can be seen in Figure 3 regulatory fog leads to more

persistence for small and medium d, and less persistence for large d. This differential effect

is driven by the planner’s trade-off under regulatory fog between (i) the potential negative

outcome from deregulating in the bad state and (ii) the information learned about the

underlying state, which can benefit future decisions. Under the full-information benchmark,

there is no such trade-off.

This leads to quite different testable implications about the relationship between the cost

of regulation and the length of regulatory spells in the presence and absence of regulatory

fog. In the presence of regulatory fog, the length of regulatory spells should shrink as the cost

of regulation increases, but the likelihood of failed deregulation should rise. In the absence

of fog, there is no relation between the cost of regulation and the length of regulatory spells

on the likelihood of failed deregulation (except at the extremes of permanent regulation and

no regulation.)

When d is small, the relative cost of deregulating in the bad state is large, leading to

delayed deregulation in order to reduce the chance for a deregulatory disaster. As d grows, the

value of being in the deregulatory good state grows, while the additional cost to deregulation

shrinks.15 The decline in persistence does not mean that regulatory fog is less important

in these circumstances. In fact under regulatory fog with high regulatory costs, the planner

simply replaces some of the time spent under regulation in the full-information environment

with time spent in the unregulated bad state. As many deregulatory episodes are immediate

15In economic environments, we view the region of parameters for which rapid cycles of deregulation and
regulation should occur to be quite rare. It is our view that planner myopia and moderate to low regulation
costs are typically the norm. In other fields such as medicine, however, there is suggestive evidence that
both regions exist. Treatment for cancer, for instance, is characterized by cycles in treatment and careful
monitoring. On the other hand, treatment for high blood pressure or depression are continuous with little
variation in treatment over time.
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failures, overall social welfare decreases.

The planner’s equilibrium payoffs in the full-information benchmark and under regulatory

fog are presented in Figure 4. When the cost of regulation is very high or low, information

has no value, since either regulation will always or never be applied. In these cases there is

no cost of regulatory fog. Otherwise it imposes an information cost on the planner which is

linear up to τρGB and concave thereafter. Overall, welfare loss is greatest for intermediate

values of d where there is both large amounts of policy persistence and high amounts of

failed experimentation.

We do not believe the CAB is a good example of the cycling phenomenon, but there is

some evidence of historical cycles in electricity generation deregulation. While regulation of

electricity generation in the 20th century was done primarily through the granting of state-

sanctioned monopolies, almost half of the U.S. states had experimented with some form of

competition by the year 2000.16 By 2006, however, only 12 states still had electricity deregu-

lation. The rest either repealed their deregulatory policies or delayed their implementations.

Norway, Sweden, and Canada had similarly tumultuous experiences, and have reintroduced

regulation to some degree.17

16http://www.ftc.gov/bcp/workshops/energymarkets/background/slocum_dereg.pdf
17See Joskow (2008).
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4 Policy Experiments

Just how bad a problem is regulatory fog? In the preceding sections we have left the planner

with the stark choice between full regulation and full deregulation and shown that, in such a

world, regulatory fog leads to persistent regulation and significant welfare losses, relative to

a benchmark policy that has no information consequences. We might wonder, however, just

how bad the information problem is in an environment with a broader policy space or if some

information may leak through even in a relatively strict regulatory regime. Furthermore, we

may wonder why a planner cannot make small alterations to regulatory policy to generate

new information without suffering the potentially disastrous consequences of full deregulation

in the bad state. This section studies the planner’s optimal policy when she has access to

experimentation, a broader set of policy options that may be less efficient than full regulation

but which are potentially more informative.

The experiments we consider in this section vary from deregulation in two ways. First,

experimentation can be conducted while maintaining regulation, but these experiments may

have an additional cost which is borne by society. These costs reflect both the direct overhead

costs of measurement and the indirect costs of implementing mechanisms which may be more

complex than the simple static regulation.

Informative mechanisms will often be very different from the static mechanism, and thus
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the indirect costs of experimentation are unlikely to be trivial. In the case of regulation

which reduces moral hazard, for instance, small changes in the incentive scheme can lead to

a large change in actions, and is typically tantamount to deregulation. Thus in this case, a

regulatory experiment which maintains regulation broadly must be more complicated than

simply cutting back on the degree of monitoring. In a broader context, dynamic mechanisms

will typically involve screening mechanisms, which must distribute information rents to a

subset of the population or encourage other forms of inefficiency.

The second difference from full deregulation is the imprecise information attained from

the small scale experiment about the underlying state. This imprecision comes from two

sources. First, there are basic statistical problems associated with sampling a small selection

of firms or markets. Even a perfect and unbiased experiment will have some sampling

variance. There is also a risk that an improperly designed experiment may lead to spurious

results. Second, the very circumscribed nature of the experiment may limit its usefulness. If

firms expect the experiment to be temporary, for example, they may react very differently

from how they would respond to a deregulation of indefinite length. The partial equilibrium

response of agents to a deregulatory experiment may be very different from the general

equilibrium response which would result from full deregulation.

To illustrate this idea, consider a planner who wants to know the probable effects of a

general lowering of immigration restrictions and experiments by relaxing the immigration

restriction to certain regions. Her experiment may give biased results for many reasons. If

the demand for entry to the areas chosen was not representative of overall demand, she may

under- or over-estimate the demand for entry. More importantly, the demand for entry to

the selected regions may be directly affected by the partial nature of the experiment. If it

is known to be a temporary loosening, immigrants may quicken their moves as compared

to how they would react to indefinite deregulation, in order to arrive within the window.

Footloose immigrants with relatively weak preferences across regions may demand entry into

newly opened areas at a much higher level than they would if the deregulation was more

general. This effect would, of course, lead a naive planner to overestimate the consequences of

deregulation. The true effect would depend on the elasticities of substitution across regions,

which may be unknowable.

The immigration example is not merely a thought experiment. In 2004, the EU ex-

panded to include the so-called “A8” countries of Czech Republic, Estonia, Hungary, Latvia,

Lithuania, Poland, Slovakia, and Slovenia. Accession nationals were formally granted the

same rights of free immigration as nationals of extant members. As the accession approached

there was widespread worry in the more-developed EU15 countries that they would experi-

ence a huge spike of immigration from new member states, with new immigrants competing
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for jobs, depressing wages, and disrupting social cohesion. In response, the Treaty of Ac-

cession allowed EU15 members to impose “temporary” restrictions on worker immigration

from the A8 countries for up to seven years after the accession. In the years immediately

after accession only the UK, Ireland, and Sweden allowed open access to their labor mar-

kets, while the remaining A15 members maintained relatively strict work permit systems.

A similar pattern held when Bulgaria and Romania (the “A2” group) were admitted to the

union in 2006.

Prior to the opening an estimated 50,000 A8 and A2 nationals were residing in the UK,

out of about 850,000 in the EU15 at large (Brücker, Alvarez-Plata and Siliverstovs 2003).

Predictions of expected flows to the UK from the A8 ranged from 5,000 to 17,000 annually

(Dustmann, Fabbri and Preston 2005). In reality, the immigrant flows were much larger than

that. Even by the strictest definition — those who self-identify upon arrival that they intend

to stay for more than a year — A8 immigration was 52,000 in 2004, 76,000 in 2005, and

92,000 in 2006 (Office for National Statistics 2006). Using estimates based on the Eurostat

Labour Force Survey, Gligorov (2009) finds that net flow of A8 worker immigrants between

2004 and 2007 was just under 500,000.

One of the most cited explanations for the underestimate of immigration flows to the UK

was not sufficiently accounting for the effects of the maintenance of immigration restrictions

by the remaining 80-percent of the EU15 (Gilpin, Henty, Lemos, Portes and Bullen 2006).

The traditional destinations for migrant workers from Eastern Europe, Germany and Austria,

were closed off by the temporary continuance of immigration restriction. Instead of waiting

for these countries to open up, the migrants instead came to the UK (and Ireland and Sweden,

to a lesser degree). Not only is it hard for other Western European countries to learn much

from the UK’s experiment, since they are not identically economically situated, but it’s even

hard for the UK to learn much about what completely free immigration across the EU would

mean for itself. The observed patterns are likely an overestimate of the effect the UK should

expect from open borders, but the degree of overestimation will depend on how many of

the migrants were crowded in by restriction elsewhere and how many legitimately preferred

coming to the UK.

4.1 Optimal Policy with Regulation and Policy Experiments

Consider an augmentation of the base model presented in section 2 that expands the set of

actions available to the planner in each period. In addition to regulating or deregulating, the

planner may instead opt for a third option of performing an experiment. When performing

the experiment, the planner continues to perform the primary regulatory function at cost d,
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and pays an additional cost of c ≥ 0 to fund and monitor the experiment. The case of basic

regulation with some costless information revelation is simply c = 0.

We consider the simplest signal structure from experimentation which captures the notion

of imprecise information. An experiment can either be a success or a failure, depending on

the underlying state and on chance. If the state is bad, the regulatory experiment will always

be a failure. If the state is good, the regulatory experiment will succeed with probability α,

and will fail with probability (1− α).18

A planner observing a failed experiment can not determine whether this failure was due

to a randomly failed experiment or a bad state of the world. Denote the updated beliefs

from a failed experiment as ε̂. Then:

(8) ε̂ =
ε

ε+ (1− ε)(1− α)
.

A planner observing a successful experiment will know she is in the good state for certain.

Let E(ε) ∈ {0, 1} represent the planner’s experimentation strategy when she believes the

state is bad with probability ε, where E = 1 indicates experimentation and E = 0 indi-

cates no experimentation. Let V (R,E|ε) be the planner’s value function playing regulation

strategy R and experimentation strategy E with beliefs ε. Define V ∗∗(ε) as the value func-

tion of a planner who chooses the maximizing regulation and experimentation regime, and

let {R∗∗(ε), E∗∗(ε)} be that maximizing strategy. Since experimentation yields strictly less

information than deregulation and has an additive cost, deregulating and experimenting in

the same period is never optimal.

Given maximization in all subsequent periods for any belief ε, the value for regulation,

deregulation, and experimentation are respectively:

V (R = 1, E = 0|ε) = −d+ δV ∗∗(P (ε)),

V (R = 0, E = 0|ε) = ε[−1 + δV ∗∗(P (1))] + (1− ε)[δV ∗∗(P (0))],

V (R = 1, E = 1|ε) = −d− c+ [ε+ (1− α)(1− ε)][δV ∗∗(P (ε̂))] + (1− ε)α[δV ∗∗(P (0))].

As before, V (R = 1, E = 0|ε), V (R = 0, E = 0|ε), V (R = 1, E = 1|ε), and V ∗∗(ε) are all

continuous and weakly decreasing in ε. Further, since 1 > d > 0, and d+ c ≥ d, deregulation

is optimal at ε = 0 and regulation is optimal at ε = 1.

18The asymmetry here is for simplicity. If a success could sometimes occur with a bad state, the planner
would update to some ε > ρGB and would either still deregulate immediately or proceed through the
updating from that point, as appropriate. This alternative formulation would change none of the basic
trade-offs identified and simply complicate the math in obvious ways.
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Our solution strategy is similar to the base case in that we look for a cutoff belief ε∗∗

such that the planner prefers experimentation to regulation when ε < ε∗∗. If this belief exists

and is (1) greater than the cutoff point ε∗ for which deregulation is better than regulation

and (2) small enough that P (ε̂∗∗) > ε∗∗, optimal policy calls for experimentation each time

the planner’s belief falls below ε∗∗ and deregulation if this experimentation is a success. As

ε̂ < 1, a planner who is unsuccessful in experimentation will wait for a shorter amount of

time before experimenting again. Thus optimal policy will typically be characterized by a

long initial regulation period followed by cycles of experimentation and shorter regulatory

spells.

Just as in the base model, the added cost of experimentation results in a larger set of

parameters for which regulation is permanent, relative to the full-information baseline. If

ε∗∗ < ε̃, the planner’s future value from experimentation is never high enough to justify

the additional costs of being in the bad state. Letting ε∗∗ converge to ε̃ from above and

continuing to assume ε∗ < ε∗∗, regulation is permanent if d ≤ ρGBτ
′, where

(9) τ ′ ≡ 1 +

(
c

α

)(
1

κ(1− ε̃)

)
> 1

and where κ ≡ δρGB

1−δ+δρGB
denotes the expected cost of the first bad state discounted one

period into the future.19 As is evident in the last term on the right hand side, permanent

regulation is mitigated if the cost of experimentation — which has precision bounded at

α(1− ε̃) — is low relative to the value of information, which is bounded at ρGB

κ
. As ε̃ is the

most optimistic belief that can occur under regulation, the value of information is maximal

at this point. Thus if experimentation does not have a positive net present value at the

steady state, it never will.

On the other hand, if ε∗∗ < ε∗, the planner’s optimal policy involves only deregulation.

In this case experimentation will never be used, and optimal policy is identical to that found

in section 2.

Finally, there is also a hybrid case which can occur if P (ε̂∗∗) < ε∗∗ and ε∗ ≤ ε∗∗. In this

case a planner may find it in her interest to continuously experiment at ε∗∗ and below, but

eventually deregulate if her beliefs fall below a secondary threshold. This case only occurs

if α is extremely low or d is very high. We view this case as most relevant when thinking

about situations in which planners may be privy to external information in each period and

return to the special case in section 4.2.

Proposition 4 summarizes the optimal policy with experimentation:

19κ is derived in the appendix as part of Proposition 3.
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Proposition 4 Assume the planner has access to deregulatory experiments, at cost c, which

will succeed with probability α in the good state and probability 0 in the bad state. Let τ be

defined as in Proposition 3 and let τ ′ be defined as above. Once regulation is applied for the

first time, the planner’s optimal policy falls into one of the following cases:

1. If d ≤ ρGB ∗min{τ, τ ′}, the planner regulates every period and never experiments.

2. If d > ρBB, the planner never regulates or experiments, even after a bad state.

3. If ρGB ∗min{τ, τ ′} < d ≤ ρBB, the planner regulates for k∗∗ periods and then either

deregulates or experiments. If the optimal choice is to deregulate, then k∗∗ = k∗ from

Proposition 3. If the optimal choice is to experiment, then k∗∗ is the first k such that

P k+1 ≤ ε∗∗ ≤ P k(1) and ε∗∗ is the solution to the implicit function:

(10) c+ δV ∗∗(P (ε))− [ε+ (1− α)(1− ε)][δV ∗∗(P (ε̂))]− (1− ε)α[δV ∗∗(P (0))] = 0

As with the case without experimentation, the range of costs for which regulatory fog

leads to permanent persistence with experimentation is decreasing in δ. In the case where

ε∗ < ε∗∗ and experiments is used, the increase of persistence is due to a decrease in κ as δ

increases. In the other two cases, the derivation is exactly the same as our baseline model.

In all cases the intuition is straightforward: the results of an experiment is only valuable

next period, so more patient regulators are more likely to use experiments.

Figure 5 shows the regions for which experimentation and deregulation is used for different

regulation costs, d, and experimentation costs c in the case of highly informative experiments

(α = .5), moderate discounting (δ = .9) and highly persistent states (ρGB = ρBG = .05). For

low regulation costs (below τρGB), deregulation is never used on its own, but only after a

successful experiment, and the optimal policy decision is between permanent regulation and

experimentation. When experimentation is costless, it will be used as long as deregulation is

ever attractive (d > ρGB). As regulation becomes more expensive, the value of information

increases leading to a greater value for experimentation and a concomitant increase in the

acceptable costs.

For moderate to high regulation costs (d > ρGBτ), a planner always deregulates eventu-

ally, and thus her decision is between implementing a strict policy of regulation and dereg-

ulation cycles or a policy which also includes experimentation. As d increases, the relative

cost to deregulating declines and thus deregulation becomes strictly more attractive. As

d approaches ρBB, the rush to deregulate leads to the abandonment of experimentation.

The intuition here is that if the planner plans to deregulate next period, even after a failed
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experiment, there is no reason to pay for an experiment.20
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A special case of our model with experimentation that is of particular importance is the

case where information arrival is exogenous, i.e., where the cost of information is zero. This

variant of the model is likely a good representation of what occurred at the CAB as well as

being a more realistic model of federalist regulation.

The presence of exogenous information has two effects in our model that combine to

make the overall effect of exogenous information on policy persistence ambiguous. First, the

presence of a non-zero probability of information arrival eliminates permanent persistence

since sooner or later good news will arrive. Second, the value of regulating has increased,

since there is now some chance of observing the state despite the regulation. This secondary

effect lowers the relative value of experimentation and causes the length of a regulatory cycle

to increase. Depending on the parameters of the model, exogenous information may crowd

out experimentation and lead to quasi-permanent regulation— i.e., regulation that stays in

place until good information is exogenously supplied. The manner in which deregulation

cascaded through a plethora of network industries within a couple decades in the 1970s,

suggests exactly this sort of phenomenon.

20For very pessimistic beliefs, the update after a failed experiment is actually more optimistic than the
prior belief, since the natural progression of the Markov process is quite large for beliefs far from the steady
state. For example, it’s easy to check that P (ρ̂BB) < ρBB for any α.
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4.2 The Value of Experimentation

Obviously, the ability to experiment has no value to the planner when it is never used in

equilibrium, and has some positive value when used. When used, its value will depend in

intuitive ways on the cost of running the experiment and the precision of information that it

uncovers. While the cost of experimentation acts linearly on the value of experimentation,

the precision of information does not. As 1
α

is multiplicative, experiments with low precision

have very limited value to the policy maker. In these cases, the planner finds it in her interest

to never use experimentation, or to use it only in conjunction with periodic deregulation.

Figure 6 shows the range of parameters for which experimentation and simple dereg-

ulation are preferred in {α, c} space. As the value of deregulation is a constant in this

space, there exists an iso-efficiency “indifference” curve along which the value of the optimal

strategy using experimentation is exactly equal to the optimal strategy without it. As the

value of experimentation is increasing in α and decreasing in c, policies which are to the

southeast of this curve are preferred to policies consisting only of deregulation. One way

to interpret this curve, c(α), is as the planner’s “willingness to pay” for an experiment of

a certain precision. It follows that any experiment falling below the line would net him a

surplus at least proportional to the distance below the line.21 This surplus is the (net) value

of experimentation.

When α is small, recall that there may be cases in which P (ε̂∗∗) < ε∗∗ and thus the plan-

ner’s beliefs are improving even after a failed experiment. In these cases, optimal regulation

may call for both experimentation and eventual deregulation. As can be seen in Figure 6, the

region for which this occurs is for α and c very small. This case is likely to include situations

such as the CAB example where the planner may learn about the state of nature from a

low probability exogenous source. As P (ε̂) is always greater than P (ε), the time between

deregulation experiments is increasing in the likelihood of external information. Thus, the

possibility for external signals can actually increase the length of the regulatory spell even

thought it unambiguously improves welfare.

The observation that the optimal experimentation frontier can be expressed as an iso-

efficiency “indifference” curve provides a method by which alternative policies can be evalu-

ated. Consider a collection of N experiments, indexed by i = 1, 2, ..., N , which are available

for the planner to choose among. Each experiment consists of a (ci, αi) combination, and we

will assume that the planner must choose one to use and stick with that choice whenever

he decides to experiment. Then this framework provides a way of analyzing the planner’s

21It would be exactly proportional if the experimenting strategy was unchanged by the reduced cost, but
the optimizing planner may also decide to start experimenting more often, further improving his payoff.
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Figure 6: Experiments vs. Deregulation (ρGB = ρBG = .05, δ = .9, d = .5)

optimal choice among these experiments. The frontier in Figure 6 is merely one (particularly

salient) indifference curve for experiments. For any experiment (ci, αi) below that frontier we

could identify a similar increasing curve ci(α) which includes that experiment (ci(αi) = ci)

and for which the planner is indifferent among all the experiments on the curve. Optimal

choice for the planner, then, simply amounts to choosing the experiment on the lowest in-

difference curve. Since (0, 0) is always in the set of experimental options, if all other options

are above the curve in Figure 6, the optimal choice is simply to never experiment. If the

feasible set of experiments is convex, the familiar tangency condition for indifference curves

and the budget frontier will characterize the optimal choice. Of course, all the natural statics

would follow from this characterization: more precise experiments should be preferred if the

marginal cost of precision falls (budget curve gets less convex) and more precise experiments

should be chosen as the marginal value of precision increases.22

22While we have concentrated our analysis on the case of temporary experiments, in order to build off
the analysis in the preceding sections, a similar exercise could be done in order to compare various sorts of
regulation, which differ with respect to how much information they let through. Imagine, for example, two
methods of regulating. The first is exactly like the regulation described above. It costs d1 to implement but
shuts down all information. The other costs d2 > d1 to implement but reveals the good state as good with
some probability, α > 0. The difference between this way of posing the problem and the way we describe
experiments is that the choice over regulatory regimes would be made ex-ante, and the higher price of the
informative regulation would need to be paid every period that regulation is imposed, instead of a temporary
premium for a temporary experiment. The most natural way of modeling the choice would depend on the
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As the cost of deregulation is a function of d, the location of the frontier between dereg-

ulation and experimentation is also a function of the cost of regulation. As we saw from

Proposition 4, experiments are never used for d < ρGB or d > ρBB, so the planner would

never be willing to pay for information in those cases (i.e., c(α) is flat at zero). Furthermore,

as was outlined in Remark 1, the costs of regulatory fog are most severe for intermediate

costs of regulation due to the high frequency of failed policy experiments and the burden

of regulation. It is precisely in these states that the willingness to pay for information is

highest, and thus c(α) is highest for intermediate d. As c(0) = 0 for all d, the iso-efficiency

curves for experimentation will become steeper as d approaches the value which maximizes

the cost of regulatory fog. It follows that the value of an additional unit of precision is always

highest when d is closest to the point which maximizes the losses due to regulatory fog in

the baseline case.

Our extended model suggests that small-scale experimentation is not a panacea for reg-

ulatory fog. As in the CAB example, the potential for external information may actually

increase the expected length of regulatory spells since regulators may prefer to wait for ex-

ternal information rather than risk a regulatory disaster. Further, as in the immigration

example at the beginning of the section, experimentation may be very costly and gener-

ate limited information when the policy is meant to mitigate moral hazard in the target

population.

5 Conclusions

Models of regulatory persistence are typically based on the role that agency and lobbying play

in influencing final policy or on some technical fixed cost of changing policy. We argue that

in many environments, regulation generates the seeds of its own persistence by altering the

information observable about the environment — a phenomenon we refer to as regulatory

fog. Under a stark policy environment of regulation and deregulation and in a broader

environment where experimentation is also allowed, we find that the effects of regulatory fog

can be quite severe. Regulatory fog can lead to permanent regulation for a broad range of

parameters, particularly by impatient planners. For most reasonable parameter values, fog

delays deregulation and causes the economy to stay in the regulated state more often than

the underlying environment warrants alone. Finally, fog can lead to deregulatory disasters

technology at hand. If switching among regulatory regimes is very costly, this second model may be more
appropriate. Nevertheless, the results are quite similar using this alternative approach. We would again end
up with indifference curves in the (d, α) space with roughly the same shape as those appearing in Figure
6, and the tradeoffs that guide optimal choice amongst regulatory regimes would be quite similar to those
discussed here.
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which can greatly diminish overall social welfare.

While we have intentionally chosen the simplest of information structures to analyze, the

intuition from our analysis extends to much more complicated information structures. Just

as in our model, at each point in time the planner faces a tradeoff in the cost and benefit of

each potential policy and the informativeness of the policy for future decision making. More

informative policies generate a higher future expected value, but also lead to much faster

responses to changes in the underlying environment. The slow and imperfect update process

associated with less informative policies often lead to delays as optimal planners prefer to

decrease risk and increase the value of information. Our analysis demonstrates that this

delay can lead to increased persistence of polices which are uninformative, a result that is

quite robust to alternative information structures and policies.

Although we have chosen to explore regulatory fog in an environment with a perfectly

public-interested planner, the information and political economy channels are quite comple-

mentary. In an interest group model such as Coate and Morris (1999), information asymme-

tries between regulated firms and consumers are likely to generate significant pressure from

regulated firms who are enjoying the protections of a regulated monopoly, but limited pull

by consumers who are uncertain as to the final outcome of deregulation. Likewise, in an

environment with politically charged regulation, partisan policymakers may develop policies

which deliberately eliminate information in order to limit the ability of competing parties to

overturn legislation in the future.

While our analysis assumes a centralized planner, decentralization is of limited use when

separated districts are symmetric and competitive. As pointed out by Rose-Ackerman (1980)

and generalized by Strumpf (2002), the potential policy experiments in other districts pro-

vides incentives for policy makers to delay their own deregulatory policies and can, in many

cases, actually lead to more regulatory persistence.23 Further, just like in the experimenta-

tion example, spill-overs from one district to another are likely to reduce the informativeness

of experimentation and may ultimately make unilateral policy decisions fail.

Our research opens both theoretical and empirical avenues for future work. On the

theoretical frontier, our current paper has restricted attention to the case where the agents

do not have incentives to strategically respond to regulation. In a world where agents

are long-lived and can influence information, it would be interesting to see to what extent

regulatory fog affects strategic interaction. When agents have a preference for being regulated

(as in a protectionist regulated monopoly setting), models of signal-jamming suggest that

23This theme is echoed in the social learning literature where social learning leads to strategic delay in
experimentation. See, for example, Gale (1996); Moscarini, Ottaviani and Smith (1998); Veldkamp (2005);
and Peck and Yang (2010).
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regulatory fog would be exacerbated. We have also restricted attention to the case where

the regulator is benevolent and does not have control over the informativeness of policy. In

a partisan landscape, we believe that bureaucrats may intentionally eliminate information

from policies in order to extend their policies beyond their own tenure.

From an empirical perspective, our paper generates a number of testable hypothesis

which we believe could be empirically explored. From a political economy standpoint, our

model would predict that variation in term lengths and term limits should have an impact

on deregulation policy. Regulators with short terms in office or who are concerned with

reelection should be less likely to experiment with deregulation relative to their long-lived

counterparts. Extensions to our model would also suggest that policy persistence may be

exacerbated by federalism and that partisan politicians may favor policies that generate

regulatory fog if they are likely to be voted out of office.

Looking across industries, our model would predict that as the cost of regulation increases

and the cost of regulatory disasters decrease, both experimentation and the frequency of

regulatory disasters should increase. Our model further predicts that regulation that either

proscribes or deters actions are likely to be the most persistent. These type of regulation

include the regulation of network industries, the regulation of illegal activities, pollution

enforcement, or regulation put in place to eliminate moral hazard. Our model also predicts

deregulatory cascades where regulators learn from the successful deregulation of similar

industries.

Finally, although this analysis has focused on regulation, we believe regulatory fog is a

general phenomenon which affects a wide variety of economic environments. Many economic

institutions such as monitoring, certification, intermediation, and organizational structures

are designed to alter the actions of heterogeneous agents which, in the process, affects the

dynamic information generated. These dynamic effects are likely to influence both the long-

term institutions which persist and the overall structure of markets and organizations.
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6 Appendix

6.1 Proofs from Main Text

Proposition 1:

Proof. We begin by defining a Markov transition matrix Q with the following four

states: s1 is the state in which the last two periods were Good; s2 is the state in which the

last period was good and the previous period was bad; s3 is the state in which the last two

periods were bad; and s4 is a state in which last period was bad and the previous period was

good. As the selected policy has no influence over the transmission between these states,

the transition matrix between states for any potential policy is given as follows:

(11) Q =


ρGG 0 0 ρGB

ρGG 0 0 ρGB

0 ρBG ρBB 0

0 ρBG ρBB 0

 ,

A policy under full information is defined as a cost vector corresponding to each of the

potential states. For a policy that always regulates, the cost vector cFullReg is simply

(−d −d −d −d). Likewise, a policy which never regulates has a cost vector cNeverReg

given by (0 0 −1 −1). Finally, a policy which regulates after a bad state and has no

regulation after a good state, ccycle yields (0 −d −d −1).
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For any initial probability vector v, the expected cost of a policy c is given by:

(12)
∞∑
i=1

δ(i−1)vQic.

This is simply the cost of each potential policy in each potential state weighted by the

probability of arriving in that state. As the Markov matrix is the same for each policy, the

potential trade off of each policy can be seen by subtracting the cost functions. The cyclical

policy is superior to full regulation when:

(13)
∞∑
i=1

δ(i−1)vQi[ccycle − cFullReg] ≥ 0.

Noting that [ccycle − cFullReg] = (d 0 0 −(1− d)) and that states s1 and s4 can only be

entered into by s1 and s2, where the state of last period was good, it follows that cyclical

policy is superior to full regulation iff:

(14) dρGG − (1− d)ρGB > 0→ d > ρGB

Repeating the exercise for a policy which never regulates, [ccycle−cFullReg] = (0 −d 1− d 0).

As states s2 and s3 can only be entered into by s3 and s4, where the state of last period was

bad, it follows that cyclical policy is superior to no regulation iff:

(15) − dρBG + (1− d)ρBB > 0→ ρBB > d

As the matrix Q and the cost vector c captures both the underlying transition matrix and

the cost of (i) being regulated in a good state and (ii) being unregulated in a bad state,

it captures all payoff relevant information of a policy. Any other candidate policy which

deviates from one of the three above must do so in a state with identical payoff-relevant

properties as one of the states of Q. As the chosen policy will be optimal in this state, the

candidate policy must be strictly dominated.

Under the cyclical policy, the probability of continuing regulation is exactly the probabil-

ity of staying in the bad state, ρBB. So the probability of having a spell of length t is given

by ρt−1BB(1− ρBB). This is exactly the pdf of a random variable with a geometric distribution

with parameter ρBB, which has a mean length of 1/(1 − ρBB). Finally, the time spent in

regulation is simply the stationary distribution of states s1 and s2 of Q. As Q is regular,

the stationary distribution is given by the vector π s.t. πQ = π. Solving this completes the

proof.
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Proposition 2:

Proof. Assume that the planner has some optimal strategy R∗(ε) which induces a value

function V ∗(ε). For any ε define

(16) G(ε) = V (R = 1|ε)− V (R = 0|ε).

V (R|ε) is continuous in ε and thus G is continuous. Since G(0) < 0, G(1) > 1, and G is

continuous, there is some ε∗ for which G(ε∗) = 0. For the Proposition it would suffice to show

that this ε∗ is unique. In fact, we show that G() is increasing, a stronger claim. Replacing

for (3) and (4) in equation (16),

G(ε) = −d+ δV ∗(P (ε))− ε[−1 + δVB]− (1− ε)δVG.

Replacing in turn for V ∗(P (ε)), this becomes

(17) max

{
−d+ δ[(−d+ δV ∗(P 2(ε))]− ε[−1 + δVB]− (1− ε)δVG,

−d+ δ[P (ε)[−1 + δVB] + (1− P (ε))δVG]− ε[−1 + δVB]− (1− ε)δVG

}
,

where the first constituent of the maximand is the difference in returns when choosing to

regulate next period after regulating this period versus not regulating this period, and the

second constituent is the return to not regulating next period after regulating this period

versus not regulating this period. More generally, define Gk(ε) as the difference between the

return for regulating for k periods and then following optimal strategies from then on and

simply not regulating this period. I.e.,

Gk(ε) = −d
k∑
j=0

δj−1 + δk{P k(ε)[−1 + δVB] + (1− P k(ε))δVG} − ε[−1 + δVB]− (1− ε)δVG

Then for all k, Gk(ε) is differentiable and increasing. Furthermore

lim
k→∞

Gk(ε) = − d

1− δ
− ε[−1 + δVB]− (1− ε)δVG,

which is also increasing in ε. Finally, note that G(ε) = maxkG
k(ε), since by assumption that

regulatory will act optimally in subsequent periods. Since G(ε) and Gk(ε) are all continuous,

it follows that G(ε) must also be increasing. Therefore, there is a unique ε∗ where G(ε) R 0

if and only if ε R ε∗, and that ε∗ will, therefore, satisfy the requirements of the Proposition.
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Corollary 1:

Proof. We’ll prove this using the implicit function theorem on G(ε). From the proof of

Proposition 2, G′(ε) > 0, and so it follows directly from the implicit function theorem that

(18) sgn

(
∂ε∗

∂d

)
= sgn

(
− ∂G(ε, d)

∂d

)
∂G(ε,d)
∂d

may vary depending on whether ε∗ is below the stead state ε̃ or above it. The easier

case occurs if ε∗ ≤ ε̃. Here, P (ε∗) ≥ ε∗, and so V (P (ε∗)) = VB = −d
1−δ . In this case,

(19) G(ε, d) = −d− δ
(

d

1− δ

)
− ε
(
− 1− δ d

1− δ

)
− (1− ε)δ

[−κ
δ
− κ
(

d

1− δ

)]
.

and so

(20)
∂G(ε, d)

∂d
= −1 +

δ

1− δ

[
− 1 + ε+ (1− ε)κ

]
< 0.

If ε∗ > ε̃, then P (ε∗) < ε∗, and so V (P (ε∗)) = P (ε∗)(−1 + δVB) + (1− P (ε∗))δVG. Noting

that VG = κ[−1
δ

+ VB], and thus ∂VG
∂d

= κ∂VB
∂d

,

(21)
∂G(ε∗, d)

∂d
= −1 + δ

∂VB
∂d

[
δ[P (ε) + (1− P (ε∗))κ]− [ε∗ + (1− ε∗)κ]

]
.

Since regulation cannot be used more than once per-period, ∂VB
∂d

> − 1
1−δ . Furthermore,

since P (ε∗) < ε∗, P (ε∗) + (1− P (ε∗)κ < ε∗ + (1− ε∗)κ, and so

∂G(ε∗, d)

∂d
) < −1 + δ(

−1

1− δ
)(ε∗ + (1− ε∗)κ)(δ − 1) = −1 + δ(ε∗ + (1− ε∗)κ) < 0.

Corollary 2:

Proof. This follows directly from Corollary 1. The update operator P () is unaffected

by d, and ε∗ increases. Thus k∗ must be weakly decreasing in d.

Proposition 3:

Proof. In deriving this strategy, there are two cases to consider. First, assume that

ε∗ ≤ ρGB. Here, even after observing the good state, the planner will want to regulate. Since

the planner takes the same action in the good and the bad states, VG = VB = V ∗(P (ε)) and

thus the value of information is zero. Thus G(ε∗) = 0 when ε∗ = d, so this case will occur

only if d ≤ ρGB, just like in the Full-Information benchmark.
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Looking at the more interesting case, assume that ε∗ > ρGB, so regulation will not be

imposed in the period immediately after the good state is observed. In this case equilibrium

regulation has the following simple structure. After observing the bad state, the planner

will regulate for k∗ periods (perhaps infinite) and deregulate in the (k∗ + 1) period to see

if the state has changed. If, upon sampling, she observes the bad state, she updates her

posterior to P (1) at the start of the next period and begins the regulation phase again. If,

on the other hand, she finds herself in the good state, she does not regulate again until she

experiences the bad state.

For ε∗ > P (1) = ρBB this strategy means the planner actually never imposes regulation.

As the value of information in this case is zero, the no regulation criterion is the same as the

full information model, with no regulation imposed when d > ρBB.

For ε∗ ∈ (ρGB, ρBB], a planner who arrives in the bad state will impose regulation and

lift it every k∗ + 1 periods to see if the state has changed. This region is characterized

by potentially long (or infinite) periods of regulation, punctuated by deregulation at fixed

intervals. If ε∗ ≤ ε̃, the planner’s beliefs will converge to the stationary state which is above

the cutoff necessary for deregulation. The planner’s future value from deregulating is not

high enough to justify the potential risk of being in the bad state.

To differentiate between the permanently persistent regulation case and the regulatory

cycles case, it suffices to find the parameter values for which ε∗ converges to ε̃ from above.

In the region of mixed regulation VG is related to VB by the potential transition from the

good to the bad state. Let κ denote the expected cost of the first bad state discounted one

period into the future:

(22) κ =
∞∑
t=0

δt(1− ρGB)tδρGB =
δρGB

1− δ + δρGB
.

The expected value of the period following the good state is given by

(23) VG = V ∗(P (0)) = ρGB[−1 + δVB] + ρGGδVG = κ[−1/δ + VB],

where the first term is the cost of being caught in the bad state without regulation and the

second term is the future valuation of being in the bad state with certainty.

As ε∗ converges to ε̃ from above, k∗ →∞ and thus

(24) lim
k∗→∞

VB =
−d

1− δ
.

Finally, recall that ε∗ is defined as the point where G(ε∗) = 0 or equivalently where V (R =
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1|ε∗) = V (R = 0|ε∗). Since ε∗ ≥ ε̃, P (ε∗) ≤ ε∗ and thus R∗(P (ε∗)) = 0. Replacing V ∗(P (ε∗))

in G(ε∗) yields the following indifference condition:

(25) d = (1− δ)
[
ε∗(δVG − δVB + 1)− δVG] + δ(δVG − δVB + 1)[ε∗ − P (ε∗)].

Since ε∗ − P (ε∗) converges to zero as ε∗ → ε̃, regulation is fully persistent if:

(26)
d

1− δ
≤ [ε̃+ (1− ε̃)κ]

[
1 + δ

d

1− δ

]
The left hand side of this equation represents the cost of permanent regulation. The right

hand side represents the expected cost of deregulating in the steady state and then perma-

nently regulating once the bad state occurs. Solving for d and bringing this result together

with the foregoing discussion leads to the strategy outlined in the proposition.

When d > ρBB regulation is never static optimal, even after the most pessimistic beliefs

that could arrive in equilibrium, so it will never be used. The argument for the τρGB cutoff

for permanent regulation is given in the text. We know beliefs fall over time from ε = 1

to ε̃ via the Markov process, so the characterization in Lemma 1 gives the result for the

intermediary case.

Proposition 4:

Proof. All the results follow from Proposition 2 except the derivation of the new cut-off

τ ′. Clearly, if experimentation is not used in equilibrium, the planner’s optimal strategy

will look identical to that in Proposition 3, so we will limit our attention to the cases where

experimentation is used prior to deregulation. At the cutoff ε∗∗, the planner is indifferent

between experimentation and regulation, so

(27) δV ∗∗(P (ε∗∗)) = −c+ [ε∗∗ + (1− α)(1− ε∗∗)][δV ∗∗(P (ε̂∗∗))] + (1− ε∗∗)α[δV ∗∗(P (0))].

Just as in the model without experimentation, V ∗∗(P (0)) = κ[−1/δ+V ∗∗(P (1))], and as ε∗∗

approaches ε̃ from above, k∗∗ →∞ and thus

(28) lim
k∗∗→∞

VB = −d/(1− δ).

At this limit, equation (27) becomes

V = −c− κ(1− ε̃)α + [ε̃+ (1− ε̃)(1− α)]V + κ(1− ε̃)V,

where V = −δd
1−δ . Replacing for V and solving for d yields the cutoff in Proposition 4.
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