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Abstract

In this paper we conduct a laboratory experiment to test the extent to which Moore
and Repullo’s subgame perfect implementation mechanism induces truth-telling, both
in a setting with perfect information and in a setting where buyers and sellers face a
small amount of uncertainty regarding the good’s value. We find that Moore-Repullo
mechanisms fail to implement truth-telling in a substantial number of cases even under
perfect information about the valuation of the good. Our data further suggests that a
substantial proportion of these lies are made by subjects who hold pessimistic beliefs
about the rationality of their trading partners. Although the mechanism should — in
theory — provide incentives for truth-telling, many buyers in fact believe that they
can increase their expected monetary payoff by lying. The deviations from truth-
telling become significantly more frequent and more persistent when agents face small
amounts of uncertainty regarding the good’s value. Our results thus suggest that both
beliefs about irrational play and small amounts of uncertainty about valuations may
constitute important reasons for the absence of Moore-Repullo mechanisms in practice.
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1 Introduction

Subgame Perfect Implementation has attracted much attention since it was introduced by

Moore & Repullo (1988). A main reason for this success is the remarkable property that

almost any social choice function can be implemented as the unique subgame perfect equi-

librium of a suitably designed dynamic mechanism.1 This was perceived as a substantial

improvement over Nash implementation, which suffered from two main limitations: first, it

would allow only a certain class of social choice rules to be implemented, those which are

“Maskin Monotonic” (Maskin, 1977; Maskin, 1999); roughly speaking, Nash implementation

does not permit the implementation of social choice rules that involve distributional concerns

between the agents. Second, Nash implementation typically involves multiple equilibria, so

that even if a desirable equilibrium exists, an undesirable one may too.

A common objection to subgame perfect implementation mechanisms, however, is that

they are hardly observed in practice. This in turn raises the question as to why one does

not observe them. A first type of answer, discussed by Selten (1975), van Damme (1984),

and Fudenberg, Kreps & Levine (1988), is that the behavioral assumptions embedded in

subgame perfection may not be a good approximation of actual behavior. Another type of

answer2 is that subgame perfect implementation is not robust to arbitrarily small deviations

from common knowledge.

In this paper we use a laboratory experiment to test the extent to which the Moore-

Repullo mechanism implements truth-telling in practice, both in a setting with perfect in-

formation and in a setting where buyers and sellers do not share common knowledge about

the good’s valuations. We implement three treatments: one with perfect information about

the value of the good (we refer to it as the no-noise treatment); one with 5% imperfect in-

formation (i.e., traders receive information about the good’s valuation that is 95% correct);

and one with 10% imperfect information (traders have information that is 90% correct). We

also conducted a robustness check with only 1% imperfect information to examine whether

even very small deviations from complete information can cause serious failures in inducing

truth-telling.

Our environment is taken from Hart & Moore (2003) where a seller is about to receive a

buyer-specific good of either high or low quality. Before learning the value of the good, the

buyer and seller would like to write a contract where the buyer pays a high price if the good

is of high quality and a low price if the good is of low quality. However, the quality of the

good is not verifiable by a third-party court and thus a state-dependent contract cannot be

1Subgame perfect implementation also assumes that individuals are sequentially rational and that transfers
of any size are allowed.

2See Aghion, Fudenberg, Holden, Kunimoto & Tercieux (2012), henceforth AFHKT.
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directly enforced.

While the state is not verifiable, public announcements can be recorded and used in legal

proceedings. Thus the two parties can in principle write a contract that specifies trade prices

as a function of announcements made by the buyer. If the buyer always tells the truth, then

his announcement can be used to set state-dependent prices. One way of doing this is to

implement a mechanism that allows announcements to be challenged by the seller and to

punish the buyer any time he is challenged. If the seller challenges only when the buyer has

told a lie, then the threat of punishment will ensure truth-telling.

The key challenge of developing the implementation mechanism is to construct a set of

rules such that the seller has an incentive to challenge lies but to prevent the seller from

challenging the buyer when he has in fact told the truth. The SPI mechanism we consider

accomplishes this by having a seller’s challenge trigger two actions: a punishment, in the

form of a fine, and a counter-offer. This counter-offer is structured so that if the buyer was

lying he will accept the counter-offer and if he was telling the truth he will reject it. By

conditioning additional award and punishments to the seller based on whether the counter-

offer was accepted or rejected, the mechanism can prevent sellers from abusing their power

by challenging when the buyer had indeed told the truth.

Thus, overall the mechanism has three stages: the announcement stage at which the buyer

announces the value of the good, the challenge stage at which the seller has the option to

challenge the buyer’s announcement, and a counter-offer stage at which the buyer can accept

or reject the counter-offer in case the seller has made a challenge. For the SPI mechanism to

induce truth-telling at the announcement stage, the later stages must be structured so that

(i) buyers have an incentive to accept counter-offers after a lie and to reject counter-offers

after the truth and (ii) sellers have an incentive to challenge lies and not challenge truthful

announcements. When experimenting with the SPI mechanism outlined above under full

information, we find that the mechanism is very successful in inducing these behaviors. In

line with what the theory would predict, buyers always reject counter-offers after a truthful

announcement and accept counter-offers over 90% of the time after a lie; sellers challenge

lies over 90% of time and challenge truthful announcements in less than 5% of cases.

Surprisingly, however, the mechanism in our full information treatment fails to induce

truth-telling in a substantial number of cases. Despite correct pecuniary incentives, buyers

who observe a high quality good lie over 30% of the time and about 10% of buyers lie in

every period. Based on beliefs data, these lies appear to be due to buyers who are pessimistic

about the rationality of the sellers and fear that truthful announcements will be challenged.

To better understand the extent to which beliefs are playing a role, we ran an additional

treatment where we elicited incentive compatible beliefs using an elicitation mechanism sim-
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ilar to the BDM mechanism (Becker, DeGroot & Marschak, 1964), which was first developed

in Savage (1971).3 We find that not only do the majority of individuals who lie believe that

they have a higher expected pecuniary payoff for lying than for telling the truth, but the

majority of individuals who tell the truth also hold these beliefs. This finding is due pri-

marily to a large majority of buyers who believe that truth-telling may be challenged. Thus

paradoxically, while the mechanism is designed to induce truth-telling based on pecuniary

incentives, the mechanism is in fact associated with beliefs that render lying profitable for

the buyers — even for the majority of buyers who tell the truth. Thus, it appears that a

substantial amount of the observed truth-telling is not due to the mechanism but to the

buyers’ intrinsic preferences for honesty.

Note that our results indicate that the mechanism does not simply fail to induce truth-

telling because the subjects generally fail to understand backward induction. In fact, sub-

jects’ behavior at the challenge stage and at the counter-offer stage is very close to the

backward induction prediction. Rather, the mechanism fails because it generates a specific

fear in buyers that they will be challenged in case of truth-telling.

Next, we analyze how the SPI mechanism performs in the presence of imperfect informa-

tion. More specifically, we introduce two noise treatments where we give buyers and sellers

imperfect signals about the underlying quality of the good which are correct either 90% or

95% of the time.4 We find that the introduction of noise increases the proportion of buyers

who announce a low value with a high signal by 15 to 25 percentage points relative to the

no-noise treatment. These buyer lies are persistent in the noise treatment and do not dimin-

ish with experience. Further, the introduction of noise causes a significant change in buyers’

beliefs; they are now much more likely to believe that lying will not be challenged. Finally,

we find that the introduction of noise also exacerbates a pattern that we already observed

in the perfect information treatment: the buyers have even more pessimistic beliefs about

being challenged after truth-telling.

In a further experiment, we study how the introduction of even small amounts of noise

impacts the mechanism. In a treatment where individuals are given the correct signal 99%

of the time, we find that the introduction of noise increases buyer lies to the levels observed

in the 95% noise treatment. Thus, even very small deviations from common knowledge can

3Variations of this elicitation method have been used by DuCharme and Donnell (1974), Grether (1981),
Allen (1987), and Holt (2006). It is shown by Karni (2009) that the mechanism induces truthful reporting
of beliefs for rational agents with any von Neumann-Morgenstern utility function.

4When noise is introduced, theory predicts that the truth-telling equilibrium is eliminated and both a mixed
strategy equilibrium and two pure strategy equilibrium emerge. As discussed in section 3.3.1, we concentrate
on the mixed strategy equilibrium in the paper because the pure strategy equilibrium are based on out-
of-equilibrium beliefs that are unlikely to exist in our experimental environment. See Appendix A for a
broader discussion of equilibria that may exist in the noise treatments.
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have a big effect on the outcome of the mechanism.

The buyers’ beliefs that even truthful announcements will be challenged by the sellers

seems to play an important role for the mechanism’s failure to induce truth-telling both

under complete and incomplete information. But does this belief indeed cause buyers’ lies?

To examine this question, we also study what Moore (1992) refers to as a simple mechanism

where we prevent buyers from being challenged if they announce a high valuation for the

good. This simple mechanism can implement the first best in our setting but would not

function in more complicated environments where both parties must announce truthfully.

In a treatment of this mechanism with no noise, the new mechanism dramatically reduces

the proportion of buyer lies, providing direct evidence that strategic uncertainty is driving

most of the lies in the no-noise treatments. With noise, however, buyer lies continue to be

common. Overall, our findings suggest that small amounts of private information do indeed

lead to large deviations from truth-telling and significantly more lies than under perfect

information.

This paper relates to several strands of literature. It first contributes to the literature

on mechanism design and more specifically on subgame perfect implementation (Maskin,

1999; Moore & Repullo, 1988; Maskin & Tirole, 1999a; Chung & Ely, 2003) by pointing to

two main sources for the failure of SPI mechanisms: namely, common knowledge about the

rationality of the other players, and (small) deviations from common knowledge in payoffs. In

particular we show that beliefs about the irrationality of the trading partner undermine the

SPI mechanism even in the case of perfect information about the good’s value. This in turn

suggests that future work should concentrate on the design and examination of mechanisms

that are robust to deviations from perfect information and perfect rationality.5 Our results

also point to a preference for truth-telling that causes some individuals to go against their

belief-based pecuniary payoffs and make truthful announcements. This result suggests that

it may be possible to design more efficient implementation mechanisms that utilize these

preferences for honesty.6

5Irrationality and a lack of common knowledge about the rationality of others appear to be important forces
in a number of other experimental settings. For example, in the formation of asset bubbles, Noussair & Plott
(2001) find that bubbles are driven in part by irrationality while Cheung, Hedegaard, & Palin (2014) find
evidence that common knowledge of rationality is important. In environments with two-sided asymmetric
information where no trade is predicted, Carrillo & Palfrey (2011) find that näıve belief formation may
help to explain violation of the no-trade theorem while Angrisani, Guarino, Huck, & Larson (2011) find
that violations decrease over time in environments where feedback is informative. The systematic under
estimation of the rationality of others is similar to results in Huck & Weizsäcker (2002) who find that beliefs
about the play of others are distorted towards the uniform prior.

6Our result that many individuals tell the truth when their monetary gain from truth-telling is negative is
related to the literature on lying aversion (Gneezy, 2005; Sanchez-Pages & Vorsatz, 2007; Ederer & Fehr,
2009).
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Second, our paper contributes to the debate on the foundations of incomplete contracts.

In their influential 1986 paper, Grossman and Hart argued that in contracting situations

where states of nature are observable but not verifiable, asset ownership (or vertical in-

tegration) can help limit ex post hold-up and thereby encourage ex-ante investments (see

Grossman & Hart (1986)). However, in subsequent work, Maskin & Tirole (1999a, 1999b)

used subgame perfect implementation to show that the non-verifiability of states of nature

can be overcome using a 3-stage subgame perfect implementation mechanism which induces

truth-telling by all parties as the unique equilibrium outcome. Our paper sheds light on why

such mechanisms are not observed in practice, which in turn helps to explain why vertical

integration or the allocation of control rights matter.

Third, our paper also contributes to the experimental literature on implementation.

Sefton & Yavas (1996) study extensive-form Abreu-Matsushima mechanisms that vary in

the number of stages used and find that incentive-compatible mechanisms with 8 and 12

stages perform worse than a mechanism with 4 stages that is not incentive compatible. Ka-

tok, Sefton & Yavas (2002) study both simultaneous and sequential versions of the Abreu-

Matsushima mechanism and conclude that individuals use only a limited number of iterations

of dominance and steps of backward induction. Our paper studies mechanisms that require

only two steps of backward induction based on the findings in these papers.

An extensive experimental literature also exists looking at efficiency of implementation

mechanisms in the public goods provision problems7, Solomon’s dilemma problems, and

problems involving the selection of arbitrators. Ponti, Gantener, Lopez-Pintado, & Mont-

gomery (2003) study two implementation mechanisms for the Solomon’s dilemma problem

and motivate their paper by a concern that first movers in a two-stage mechanism may

take suboptimal actions if they fear that second movers will behave irrationally. Our paper

finds evidence in support of this channel. Discussing the search for good mechanisms for

the selection of arbitrators, de Clippel, Eliaz, & Knight (2015) argue that one desiderata in

the search for good mechanisms is that a “mechanism has as few stages as possible so that

backward induction is relatively ‘simple’ to execute.” Our paper provides empirical support

for this criterion by showing that eliminating unneeded branches of a mechanism can lead

to large improvements in its performance.

7Chen & Plott (1996), Chen & Tang (1998), and Healy (2006) study learning dynamics in public good provi-
sion mechanisms. Andreoni & Varian (1999), Falkinger, Fehr, Gachter, Winter-Ebmer (2000), and Chen &
Gazzale (2004) study two-stage compensation mechanisms that build on work from Moore-Repullo (1988),
while Harstad & Marrese (1981, 1982), Attiyeh, Franciosi, & Isaac (2000), Arifovic & Ledyard (2004), and
Bracht, Figuieres, & Ratto (2008) study the voluntary contribution game, Groves–Ledyard, and Falkinger
mechanisms respectively. Masuda, Okano & Saijo (2014) study approval mechanisms and emphasize the
need for implementation mechanisms to be robust to multiple reasoning processes and behavioral assump-
tions.
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Most closely related to our paper is Fehr, Powell, & Wilkening (2014) who show that

reciprocity considerations may cause the SPI mechanism to fail. By contrast, in this paper we

intentionally designed our mechanism and environment so that reciprocity is unlikely to play

a role in the no-noise treatment8, and concentrate instead on how incomplete information

and other forces such as irrational beliefs and strategic uncertainty may affect SPI.

The remaining part of the paper is organized as follows. Section 2 presents the sim-

ple model which guides our experimental design. Section 3 describes the experiment and

hypotheses. Section 4 presents the experimental results under perfect and imperfect infor-

mation. Section 5 concludes by suggesting broader implications from our experiment and

avenues for future research.

2 Theoretical Motivation

In this section we present a simple example which will guide our experimental design.

2.1 Common Knowledge

The following example is based on Hart & Moore (2003).9 There are two parties, a B(uyer)

and a S(eller) of a single unit of an indivisible good. If trade occurs then B’s payoff is

VB = θ − p, where θ is the value of the good and p is the price. S’s payoff is just VS = p.

The good can be of either high (the state is θ = θH) or low quality (θ = θL). If it is high

quality then B values it at 70, and if it is low quality then B values it at 20. Before θ is

realized both parties would prefer to trade at a price p(θ) = θ/2. This price always ensures

that trade occurs when it is efficient and splits the surplus evenly between the buyer and

the seller in all states of the world so that inequity aversion does not influence the desire for

trade.

The value θ is observable and common knowledge to both parties but non-verifiable by

a court. The assumption that the value θ is non-verifiable implies that no contract can be

written that is credibly contingent on θ. However, truthful revelation of θ can be achieved

through the following Moore-Repullo (MR) mechanism which can indirectly generate the

desired price schedule (see also the extensive form representation of the mechanism in Figure

1):

1. B announces either “high” or “low”. If “high” and S does not “challenge” B’s an-

nouncement, then B pays S a price equal to 35 and the game then ends.

8We deliberately chose parameters in our experiment that made reciprocal behavior very costly and thus
very unlikely to occur in the no-noise treatment.

9This original example is also reported in Aghion & Holden (2011).
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2. If B announces “low” and S does not “challenge” B’s announcement, then B pays a

price equal to 10 and the game ends.

3. If S challenges B’s announcement then:

(a) B pays a fine of F = 25 to T (a third party).

(b) B is made a counter-offer for the good at a price of 75 if his announcement was

“high” and a price of 25 if his announcement was “low.”

(c) If B accepts the counter-offer then S receives the fine F = 25 from T (and also

the counter-offer price from B) and the game ends.

(d) If B rejects the counter-offer then S pays F = 25 to T . S also gives the good to

T who destroys it and the game ends.

Figure 1: Extensive Form Representation of the Moore-Repullo Mechanism. First, Nature
determines the value of the good after which the buyer announces whether the value is High
Low. The seller observes the value of the good and the buyer’s announcement and can then
challenge (C) or not challenge (NC) the announcement. In the final stage, the buyer can
accept (A) or reject (R) the counteroffer. The unique subgame perfect equilibrium (when θ
is common knowledge) is illustrated by bold branches.

When the true value of the good is common knowledge between B and S, individuals

are rational, and there is common strong belief in rationality, this mechanism yields truth-

telling as the unique subgame-perfect equilibrium. The logic of this equilibrium is that the

initial-prices, counter-offer prices, and fines are constructed so that if B and S are commonly

known to be sequentially rational, B only has an incentive to announce “high” if θ = θH
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and “low” if θ = θL. As can be seen in the extensive form representation of the mechanism

shown in Figure 1, for this to be true, the mechanism must satisfy three conditions.

(i) Counter-Offer Condition. B must prefer to accept any counter-offer for which he

has announced “low” when θ = θH . B must prefer to reject any counter-offer for which

he has announced “low” when θ = θL or for which he announced “high”.

(ii) Appropriate-Challenge Condition. S must prefer to challenge an announcement

of “low” when θ = θH and must prefer not to challenge an announcement of “low”

when θ = θL. S must prefer to never challenge “high”.

(iii) Truth-Telling Condition. B must prefer to announce “low” if θ = θL and “high” if

θ = θH .

We discuss these conditions in greater detail in Section 3.3.

2.2 The Failure of Truth-Telling Under (Small) Informational Per-

turbations

We now introduce a small common p-belief perturbation from common knowledge about the

valuation θ. We assume (i) the players have a common prior µ, (ii) µ(θ = θH = 70) = .5,

and (iii) µ(θ = θL = 20) = .5.10 Each player receives an independent draw from a signal

structure with two possible signals: sH or sL, where sH is a high signal where θ equals 70

with probability 1− ε, and sL is a low signal where θ is equal to 20 with probability 1− ε.
We use the notation sHB (resp. sLB) to indicate that B received the high signal sH (resp. the

low signal sL).

With a small common p-belief perturbation there is no equilibrium in pure strategies in

which the buyer and seller always report truthfully. To see this, suppose instead that such

an equilibrium exists, and further suppose that B gets signal sLB, announces “low,” and is

challenged. Under a truth-telling equilibrium, the buyer’s belief is that his signal and the

seller’s signal are incorrect with equal probability, and thus the expected value of the good

is 45. As this is above the counter-offer price of 25, the buyer has an incentive to purchase

regardless of his signal.

Anticipating the acceptance of challenges with a low signal and “low” announcement, the

seller now has an incentive to challenge even if his signal is sLS . It follows that there does not

exist an equilibrium where all parties are truth-telling in pure strategies. For slight changes

10AFHTK consider a more general setting with an arbitrary prior. However, to map closest to the experiment,
we develop the theoretical part with the same values, priors, and error distributions as those used in the
actual experiment in the next section.
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in the environment, a similar pattern can hold in the case of a buyer who receives signal sHB
and is considering whether to make the “high” or “low” announcement. In this case, under

the truth-telling equilibrium, the seller will be unsure as to the value of the good and may

not challenge the announcement if she believes the buyer will reject the counter-offer.

3 The Experiment

3.1 The Subgame-Perfect Implementation Game

At the center of our experimental design is a computerized version of the Subgame-Perfect

Implementation game we discussed in the previous section. In each of twenty periods, a

buyer is matched with a seller and randomly assigned one of two sealed containers.11 One

container is worth 70 Experimental Currency Units (ECU) to the buyer while the other

container is worth 20 ECU.12 Containers are selected with equal probability and both the

buyer and seller do not initially know which container has been chosen while trading.

Each of the two containers is filled with red and blue balls whose composition changes

by treatment:

1. No-Noise Treatment: In the no-noise treatment, the container worth 70 ECU is

filled with 20 red balls and 0 blue balls. The container worth 20 ECU is filled with 20

blue balls and 0 red balls.

2. 5% Noise Treatment: In the 5% noise treatment, the container worth 70 ECU is

filled with 19 red balls and 1 blue ball. The container worth 20 ECU is filled with 19

blue balls and 1 red ball.

3. 10% Noise Treatment: In the 10% noise treatment, the container worth 70 ECU is

filled with 18 red balls and 2 blue balls. The container worth 20 ECU is filled with 18

blue balls and 2 red balls.

At the beginning of each period, one of the balls in the container assigned to the buyer

is randomly drawn and secretly shown to the seller. This ball is put back into the container

and a second ball is randomly drawn for the buyer. These signals provide perfect infor-

mation regarding the container being traded in the no-noise treatment and almost perfect

11Subjects are randomly assigned the role of a buyer or of a seller and remain in this role throughout the
experiment.

12The exchange rate of ECU to Australian dollars was at a rate of 10 ECU = 1 AUD.
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information in the 5% and 10% noise treatments.13

Unlike the seller’s draw, we do not immediately show the buyer his draw from the con-

tainer. Before the buyer knows the color of his ball he is asked to make an announcement

concerning the value of the container for the case in which the ball drawn for him is red

or blue. He may announce a value of either 70 ECU or 20 ECU in each of the two cases.

This strategy method gives us a complete set of announcement data in each period which

precludes changes in the frequency of lies over time due to random assignment of signals to

different subsets of buyers. The strategy method also allows for a complete panel of choices

which improves our ability to control for heterogeneity across individuals.14

After making choices for both possible signals, the colour of the ball drawn is revealed

to the buyer and his declared strategy for this ball colour is implemented by the computer.

This results in a single buyer announcement that is used in the following stages.

The announcement of the buyer (but not his complete strategy) is next seen by the seller

as well as a computerized arbitrator who acts as the implementation mechanism. After

observing the announcement, the seller has the option of accepting the announcement or

calling the arbitrator. If the seller accepts the announcement, trade occurs at a price equal

to 1/2 of the announcement. If, however, the seller elects to call the arbitrator, the buyer is

immediately charged a fine of 25 ECU and the game continues on to the arbitration response

stage.

In the arbitration response stage, the buyer is given a counter-offer by the computerized

arbitrator which is based on his initial announcement. If he announced a value of 70 ECU,

the arbitrator gives a counter-offer of 75 ECU. If he announced a value of 20 ECU, the

arbitrator gives a counter-offer of 25 ECU.

If the buyer accepts the counter-offer, trade occurs at the counter-offer price. In this case

the seller is given the 25 ECU which was previously charged as a fine to the buyer.15 If,

however, the buyer rejects the counter-offer, no trade occurs and the seller is also charged a

fine of 25 ECU yielding a loss of 25 ECU for both parties. Note that the structure of fines

ensures that under full information the subgame-perfect equilibrium is unique.

In the event that trade occurs, the actual value of the container is revealed and the profits

13In the control quiz, subjects are asked to calculate the likelihood of the other party having the same color
ball as them in each treatment. For the no-noise treatment we announce in the verbal summary that “if
you see a red ball, you know with 100% certainty that your matched partner has also seen a red ball.
Likewise, if you see a blue ball, you know with 100% certainty that your matched partner has also seen
a blue ball.” For the noise treatments we announce the probability that both parties observe the same
signal.

14We ran four pilot sessions without the strategy method. The lying rates in these pilot sessions were slightly
higher than those reported in the results section, but the treatment effect is similar.

15As discussed in the next section, sellers were given the entire fine to maximize the incentive of sellers to
make challenges across a large range of potential beliefs.
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of the buyer and seller are realized based on the value of the container, the price, and any

fines. The profits of each individual are calculated after each period.

In addition to action profiles of the implementation mechanism, we also elicited beliefs

about the likelihood of actions of the other party. Likelihoods were recorded using a 4-point

Likert scale (Never/Unlikely/Likely/Always). The belief elicitation was done in each period

directly after the buyer or seller took their action. For a buyer, we elicited the likelihood that

the seller would challenge an announcement of 20 ECU and 70 ECU in each period given his

observed signal, and we did so right after the buyer made her announcement decision but

before discovering the seller’s action. For a seller, we elicited the likelihood that the buyer

would reject the seller’s challenge given the observed announcement and the seller’s signal.

We did not pay subjects for their beliefs because in the main sessions we were primarily

interested in the behavioral data. If we had compensated subjects for both their beliefs and

their actions, risk averse subject could have found it optimal to hedge risk by stating beliefs

which differ from their true estimates — a possibility that is discussed in more detail in

Blanco, Engelmann, Koch & Normann (2010). Moreover, we ran four additional sessions

where we did not elicit beliefs to check whether belief elicitation affects behavior. In these

sessions subjects faced 5% noise for 10 periods and then no noise for 10 periods. We find

no behavioral differences between these control sessions and the main sessions with the

same treatment ordering and with belief elicitation. In particular, the distribution of buyer

announcements after a high signal neither differs in the 5% noise treatments (Mann-Whitney-

Wilcoxen test, p-value = .53) nor in the no-noise treatments (Mann-Whitney-Wilcoxen test,

p-value = .34).

3.2 Experimental Design and Protocols

Our experimental design utilizes a within-subjects design in which each subject is exposed

to 10 periods of the no-noise treatment and 10 periods of one of the two noise treatments.

Our main experiments consisted of 16 sessions: eight with a 5% noise level and eight with

a 10% noise level. We conducted half the sessions starting with the no-noise treatment and

switching to the noise treatment in period 11. We reversed the order of the two treatments

in the remaining sessions. Each session contained between 20 and 24 subjects who were

evenly divided between buyers and sellers at the beginning of the experiment. Buyers and

sellers were matched with each other at most once in each of the two treatments.

All of the experiments were run in the Experimental Economics Laboratory at the Uni-

versity of Melbourne in September and October of 2009. The experiments were conducted

using the programming language z-Tree (Fischbacher 2007). All of the 348 participants were

12



Treatment 1 Treatment 2 Number of Subjects
Session 1-4 No Noise 5% Noise 88
Session 5-8 5% Noise No Noise 84
Session 9-12 No Noise 10% Noise 90
Session 13-16 10% Noise No Noise 86

Table 1: Treatments and Observations - 10 Periods per Treatment

undergraduate students at the University, who were randomly invited from a pool of more

than 3000 volunteers using ORSEE (Greiner 2004). An additional 340 participants were

recruited in follow-up sessions conducted in 2010 and 2013.

Upon arrival to the laboratory, participants were divided into buyers and sellers and asked

to read the instructions. To be as fair as possible to the mechanism, the instructions described

the game in detail, explaining each possible signal, announcement, and arbitration action

profiles in order to make the payoff consequences of a challenge and the rejection/acceptance

of a challenge transparent. The instructions also included a summary table which showed

the payoff consequences of each combination of container value, announcements, challenges,

and responses to challenges for both the buyer and the seller. The instructions then ended

with a set of practice questions which tested subjects’ understanding of the signal valuations

and the payoff consequences of accepting or rejecting counter-offers after a lie and after a

truthful announcement. Once the answers of all participants were checked, the experimenter

read aloud a summary of the instructions. The purpose of the summary was to ensure that

the main features of the experiment were common knowledge amongst the participants.

Subjects then participated in the main experiment which was conducted in two parts.

Subjects first played 10 periods of their assigned treatment, being matched with a different

partner on the other side of the market in each period. At the start of period 11, new instruc-

tions were distributed concerning the change in information structure between treatments,

which were read aloud. Subjects then played 10 additional periods, again matching with the

same partner at most once.

Following a short questionnaire in which gender and other demographic information were

recorded, payments to the subjects were made in cash based on the earnings they accumu-

lated throughout the experiment with an exchange rate of 10 ECU to $1 AUD. In addition,

each subject received a show-up fee of $10. Since payoffs during the experiment could be

negative, the subjects could use the show-up fee to prevent bankruptcy during the experi-

13



ment.16 The average payment at the end of the experiment was $51.10 AUD.17 At the time

of the 2009 experiments $1 AUD = $0.80 USD.

3.3 Hypotheses

The Moore-Repullo mechanism used in our experiment is designed to implement truthful

announcements and efficient trade. Our predictions in the no-noise treatment are as follows:

Hypothesis 1 In the no-noise treatment buyers truthfully announce their signals and sellers

do not challenge these announcements.

Hypothesis 1 is based on three conditions that must be satisfied in order for the mech-

anism to function: the counter-offer condition, the appropriate-challenge condition and the

truth-telling condition. Each of these conditions has implicit assumptions about how indi-

viduals behave and require at least some consistency between an individual’s beliefs and the

actions of other individuals at later stages of the game.

The counter-offer condition requires that a buyer who is appropriately challenged is

willing to accept the counter-offer instead of rejecting it. As discussed in detail in Fehr,

Powell & Wilkening (2014), there is strong evidence of non-pecuniary benefits for rejecting

an appropriate challenge when individuals are negatively reciprocal. In the current paper,

we wanted to focus on the impact of imperfect information, irrational beliefs, and strategic

uncertainty and chose parameters where the counter-offer condition was likely to be met

even when buyers were negatively reciprocal.18

The appropriate-challenge condition requires that sellers make appropriate challenges

but not inappropriate challenges. In order to maximize the incentive of sellers to make

appropriate challenges across a large range of potential beliefs about the buyer’s behavior

at the counter offer stage, we chose to pass the fine F to the seller in the case that the

counter-offer is accepted.

16While we had no bankruptcies in the experiment, there is a potential that the description of bankruptcy
rules could prime individuals to be more loss averse in the experiment. To check for this, the eight
additional control treatments without beliefs paid only for a single period and increased the show-up fee
to $35 to cover the worst outcome. We find no significant difference in our results.

17The experiment took roughly 1.5 hours resulting in an hourly pay rate of $34.07 AUD. The Australian
minimum wage is $21.08 for casual employment.

18In our no-noise treatment, a buyer with a high signal who retaliates after a low announcement and a chal-
lenge must prefer the payoffs of {−25,−25} for the Buyer and Seller over payoffs of {20, 50}. Equivalently,
he must be willing to destroy $.60 of his own money to destroy $1.00 of the seller’s money after a low
announcement and a challenge. This is much larger than what is seen in standard ultimatum games. For
example, in a $10 ultimatum game such a high level of required reciprocity implies that an offer of $3.75
is rejected - an event that almost never occurs in subject pools such as ours.
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Finally, for the truth-telling condition to hold, it must be that a buyer, given his beliefs

about the actions of the seller, has an incentive to make a truthful announcement rather than

a lie. This decision is based on the buyer’s belief about the likelihood of being challenged

after a lie and the likelihood of being challenged after a truthful announcement.

As the truth-telling condition is based on the incentives generated from the lower two

stages, we parameterized the experiment with an eye toward making each of the intermediate

conditions as slack as possible. In places where parameters affected multiple constraints

simultaneously (such as the fine size or counter-offer price) we erred toward ensuring that

the counter-offer condition was satisfied. We also set the prices in the absence of a challenge

equal to half of the buyer’s announcement in order to minimize the importance of fairness

considerations and to make the subgame perfect equilibrium salient.

3.3.1 The Noise Treatments

As soon as one introduces noise in agents’ information about the state of nature (i.e about

the value of the good to be traded), the truth-telling equilibrium vanishes and pure and

mixed strategy equilibria arise in which either: (i) the buyer makes announcements which

are different to his signal; and/or (ii) the seller challenges announcements which are the same

as her signal.

In Appendix A of the paper, we show that our environment generates two pure strategy

equilibrium and a mixed strategy equilibrium when noise is introduced. In the discussion

below, we concentrate on the mixed strategy equilibrium because the pure strategy equilib-

rium are based on out-of-equilibrium beliefs that are unlikely to exist in our experimental

environment.19

Taking into consideration only pecuniary incentives, the mixed strategy equilibrium in

our game involves buyers truthfully announcing their signals and sellers who mix between

challenging and not challenging when they observe a low signal and a low announcement.

Buyers in this equilibrium mix between accepting and rejecting the counter offer when they

are challenged after making a low announcement with a low signal.

Unlike our no-noise environment where we can minimize the impact of negative reciprocity

on the equilibrium predictions of the game, the mixed strategy above requires that the buyer

is indifferent between accepting and rejecting the counter-offer when he is challenged. When

19In the pure strategy equilibrium that involves buyer lies, the buyers’ lies are supported by an out-of-
equilibrium belief of sellers that any challenge they make will be rejected. Given that we maximized the
incentives of buyers to accept challenges, we did not expect that sellers would hold these beliefs and did not
expect them to be common knowledge. In the other pure-strategy equilibrium, buyers always announce
high because they fear that sellers will always challenge a low announcement even when they observe a
low signal. While such beliefs may be more plausible, we do not find evidence of such buyer strategies in
the empirical data.
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buyers are negatively reciprocal and view challenges of the seller as an unkind act, they may

be willing to reduce their own expected payoffs in order to reduce the earnings of a seller

who has challenged them. Thus, even small amounts of negative reciprocity will change the

behavioral properties of the mixed strategy equilibrium. We describe this in more detail in

appendix A of our paper. Here we only provide a short summary of the impact of negative

reciprocity on the mixed strategy equilibrium.

If buyers are moderately reciprocal, it will be the case that sellers no longer have an

incentive to make false challenges (i.e., challenging after they received a low signal and

the buyer announce low) and therefore an alternative mixed strategy equilibrium emerges

in which buyers lie with positive probability and sellers mix between challenging and not

challenging when they observe a high signal and are faced with a low announcement.

Structural estimates of reciprocity using data from Fehr, Powell & Wilkening (2014)

indicate that subjects are willing to sacrifice between $.17 and $.46 to destroy $1 of wealth of

a seller after a legitimate challenge in a related subgame-perfect implementation mechanism.

Across this range of reciprocal preferences we expect to see mixed strategies with buyer lies

and may also see mixed strategies with seller false challenges. While different distributions

of reciprocity will lead to slightly different point predictions, a property of the model is that

the total lies by buyers and false challenges by sellers increases when noise is introduced.

In addition, the challenges of buyers’ lies and the rejection of false challenges is lower with

noise than without noise. We summarize these prediction in the following hypotheses.

Hypothesis 2 The likelihood that a buyer with a high signal announces a low valuation is

higher in the treatments with imperfect information. The likelihood that a seller with a high

signal challenges a low announcement is lower in the treatments with imperfect information.

Hypothesis 3 The likelihood that a seller with a low signal challenges a low announcement

is higher in the treatments with imperfect information. The likelihood that a buyer accepts

such a challenge although he received a low signal is also higher in the imperfect information

treatments.

4 Experimental Results

We describe the results of the experiment in this section. Section 4.1 uses the data from

the no-noise treatments to study Hypothesis 1. Section 4.2 uses data on beliefs and from a

number of additional experiments to interpret some of the results from Section 4.1. Section

4.3 uses data from both the no-noise and noise treatments to study Hypotheses 2 and 3.
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We call a draw of a red ball the high signal, a draw of a blue ball the low signal,

an announcement of 70 a high announcement and an announcement of 20 a low an-

nouncement. As before, we define a lie as an announcement by B of a low value after

observing a high signal. We define an appropriate challenge as a challenge by S of a low

announcement with the high signal, an inappropriate challenge as a challenge by S of a

high announcement with the high signal, and a false challenge as a challenge by S of a low

announcement with the low signal.

4.1 The Mechanism Under Perfect Information

Under Hypothesis 1, our experimental design predicts that in the no-noise treatment, the

counter-offer condition, appropriate-challenge condition, and truth-telling condition will

hold. These conditions imply that B will always tell the truth, S will make only appropriate

challenges, and B will accept counter-offers if and only if they result from an appropriate

challenge. The data from the no-noise treatment provides support for only two of these

conditions.

Result 1 The mechanism fails to induce truth-telling in a substantial number of cases. This

occurs despite the fact that sellers appropriately challenge buyers’ lies most of the time and

buyers accept these (appropriate) challenges and reject false challenges most of the time.

Figure 2 displays the patterns of play we observed in the no-noise treatment of the ex-

periment. The left column examines play when an individual receives a low signal while the

right side examines play when an individual receives a high signal. Panel (a) summarizes

B’s announcement decision, Panel (b) summarizes S’s challenge decision, and Panel (c) sum-

marizes B’s decision to accept or reject counter-offers. The error bars show 95% confidence

intervals of each proportion with standard errors clustered at the individual level.

Panel (a) shows that after a low signal, 97.2% of individuals announce that the value

is low. By contrast, after a high signal, 30.8% deviate from the theoretical prediction of

Hypothesis 1 and lie. We discuss this deviation from truth-telling in greater detail below

after detailing play in the other stages of the game.

Panel (b) shows the proportion of announcements that are challenged after each combi-

nation of announcement and signal. As can be seen, a low announcement with a low signal is

challenged only 4.8% of the time while a high announcement with a high signal is challenged

only 4.1% of the time. This implies that inappropriate challenges rarely occur in the data.

By contrast, S’s challenge a low announcement with a high signal 93.4% of the time implying

that S’s almost always make appropriate challenges.
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Finally, Panel (c) shows the proportion of counter-offers that are accepted for each com-

bination of announcement and signal. In the case of a high signal, B’s always reject counter-

offers after truthful announcements and almost always accept counter-offers after a lie. In

the case of a low signal, B’s always reject challenges after a low announcement.

While there are small deviations from the theoretical predictions of the model in the

challenge stage and counter-offer stage, these deviations tend to vanish over time. Panel

(a) of Figure 3 tracks the proportion of truthful announcements that are challenged in each

period. This data is overlayed with the predictions and 95% confidence intervals from a

simple linear random effects regression that regresses the challenge decision on the period.

As can be seen, challenges of truthful announcements are diminishing and the proportion of

truthful announcements that are challenged is not significantly different from the theoretical

prediction of 0% by period 10. Similarly, as seen on the right side of Panel (b), challenges

of lies are increasing over time and the proportion of lies is not significantly different from

the theoretical prediction of 100% by period 10. Taken together, the data strongly supports

the appropriate-challenge condition.

Panel (c) of Figure 3 tracks the proportion of counter-offers that are accepted after a lie

over time using the same construction of the prediction line and 95% confidence intervals

as in the previous panels. While some B’s initially reject counter-offers, the proportion of

counter-offers being accepted increases over time and is not significantly different to the

theoretical prediction by period 10. Thus, there is strong evidence that the counter-offer

condition is met in the data.

Given that the appropriate-challenge condition and the counter-offer condition hold, B’s

have pecuniary incentives to announce truthfully by construction of the mechanism. Thus,

we might expect that lies — defined as low announcements with the high signal — converge

to zero over time. Figure 4 shows that this is not the case. As can be seen in Panel (a),

the proportion of B’s who are lying is indeed slightly decreasing over time. However, this

proportion is above 20% and significantly different from the theoretical prediction of 0% even

in period 10. In fact, looking at the last four periods the rate of lying is constant at roughly

25%.20

Panel (b) shows a histogram of B’s lie rates in the no-noise treatment using all periods.

As can be seen, 37.9% of B’s never lie in the no-noise treatment while 10.9% of individuals

lie in every period. This bimodal distribution becomes more pronounced over time: in a

20The rate of lying is 23.9% in the last four periods of sessions that begin in the no-noise treatment and
23.5% in sessions that ended with the no-noise treatment. Thus the ordering of treatments does not appear
to influence the rate of lying. As discussed in section 4.2, we also ran 30 and 40 period follow-up sessions
of the no-noise treatment where we elicited incentive compatible beliefs. The rate of lying in the last 5
periods of these sessions was close to 40% and there is no evidence of convergence towards zero.
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Figure 2: Pattern of Play in No-Noise Treatment
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restricted sample of the last five periods of the treatment, 60.9% of B’s never lie while 17.2%

lie in each period. Thus, while many individuals stop lying over time a significant subset of

individuals do not stop lying. We explore why these individuals may find it in their interest

to lie in the next section.
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Figure 4: Evolution and Distribution of Lies in Announcement Stage of No-Noise Treatment

4.2 Understanding Deviations from Truth-Telling in the No-Noise

Treatment

One potential reason for the failure of subgame-perfect implementation is that individuals

must place a large amount of faith in the rationality of other players. B’s who announce

truthfully must have faith that S’s will not make an inappropriate challenge. However, if a

B’s fear of such an inappropriate challenge is high enough, it may be in his best interest to

adopt a strategy that minimizes his potential losses.

In practice, it is relatively rare for S’s to make an inappropriate challenge. Nonetheless,

the belief that some S’s challenge a truthful high announcement may induce B’s to lie. The

implemented mechanism implies that a challenged high announcement will lead to relatively

large losses for B regardless of whether B accepts or rejects the challenge. If B accepts the

challenge, he will earn 70 - 75 - 25 = -30; if he rejects the challenge, he will earn -25. These

losses contrast sharply with the payoff of 20 that B can guarantee himself by lying, being

challenged by S, and accepting the counter-offer.

Looking at the beliefs data of B, it appears that the fear of inappropriate challenges

is strongly correlated with lies. Table 2 reports the results of regression analysis where
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the dependent variable is 1 if B lies after the high signal and 0 if B makes a truthful

announcement. This variable is regressed on the belief that a lie will be challenged and the

belief that a truthful announcement will be challenged. To allow for potential non-linearities

in the beliefs data we treat B’s beliefs as categorical data and split the 4-point Likert scale

into a series of dummy variables. We use the category “Never” as the omitted dummy

category. Column (1) reports the results of a simple linear probability model with errors

clustered at the individual level. Column (2) reports the results of a fixed effects regression

with both time and individual level fixed effects.

As can be seen in column (1), B’s belief about the likelihood that he will be challenged

after a truthful announcement correlates with his likelihood of making a lie. B’s are 39.7

(59.0) percentage points more likely to lie if they believe that a truthful announcement

is “Likely” (“Always”) to be challenged relative to an individual who believes a truthful

announcement will “Never” be challenged. The probability of making a lie is increasing as

an individual’s beliefs becomes more pessimistic suggesting a monotonic relationship between

beliefs and lies. This conclusion also holds if we control for individual and time fixed effects

(see column 2).

4.2.1 Precise quantification of beliefs to better understand buyer lies

To explore further the way in which beliefs may be guiding lies in the no-noise treatment

we ran an additional experiment in which we elicited probabilistic beliefs of being chal-

lenged using an incentive-compatible elicitation mechanism developed in Savage (1971) that

is shown by Karni (2009) to induce truthful reporting of beliefs for rational agents with

any von Neumann-Morgenstern utility function.21 In this follow-up treatment, we restricted

attention to only the no-noise treatment and ran additional periods to study convergence.

We ran two sessions with 30 periods and two sessions with 40 periods with random matching

across periods. A total of 90 individuals participated in the experiment. The details of this

elicitation mechanism can be found in Appendix B.22

21Akin to a standard BDM mechanism (Becker, DeGroot & Marschak, 1964), the belief elicitation mechanism
gives B a dominant strategy to announce his true beliefs by using B’s reported belief to assign him to
one of two lotteries — one that is contingent on S’s challenge decision and one that is independent of this
decision — across a set of binary lottery pairs. We randomly select one of these lottery pairs to be played
so that beliefs impact the assignment of B to a lottery but not the explicit characteristics of this lottery.
We use the strategy method in this follow up experiment for S’s challenge decisions as we want to elicit
incentive-compatible beliefs from B about the likelihood of being challenged after a truthful announcement
and after a lie. To do so we need to know S’s challenge decision for both announcements. See Appendix
B for full details.

22As we were concerned with potential hedging, the follow-up experiment paid only for one period of the
experiment and only for the announcement game or the belief elicitation game. There was a 50% chance
that the announcement game would be paid and a 50% chance that one announcement-signal combination
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Table 2: Linear Probability Model of Lies by Buyers

Buyers Belief that  Seller will Challenge a High 

Announcement with High Signal
(1) (2)

 "Unlikely" 0.065 0.025

(0.051) (0.044)

"Likely" 0.397 *** 0.186 ***

(0.070) (0.055)

"Always" 0.590 *** 0.234 ***

(0.074) (0.063)

Buyers Belief that Seller Will Challenge a Low 

Announcement with High Signal

"Unlikely" ‐0.027 ‐0.170 ***

(0.089) (0.064)

"Likely" ‐0.040 ‐0.024

(0.071) (0.064)

"Always" ‐0.127 * ‐0.113 *

(0.066) (0.059)

Constant 0.249 *** 0.325 ***

(0.060) (0.049)

Individual Fixed Effects No Yes

Time Fixed Effects No Yes

R2 0.203 0.156

Observations 851 851

Dependent varaible is 1 if the buyer lies by announcing low with a high signal and 0 otherwise.  The

omitted category is Seller "Never" Challenges.  Regression (1) is a linear probability model with errors

clustered by individual.  Regression (2) is a fixed effect regression with both time and individual fixed

 effects.  *,**,*** denote siginificance at the 10%, 5% and 1% respectively.

23



Result 2 The majority of B’s have pessimistic beliefs about being challenged after a truthful

announcement of 70. The majority of B’s have optimistic beliefs about being challenged after

a lie of 20.

Figure 5 compares the empirical challenge probability of S’s to B’s belief of being chal-

lenged. Both the means and 95% confidence intervals shown are calculated from individual

averages. As can be seen on the right hand side of the figure, buyers are strongly pessimistic

about the likelihood of being challenged after a truthful high announcement. While the em-

pirical probability of being challenged is 9.1%, the average belief is 30.4%. This pessimism is

prevalent across the population, with 80.1% of individuals having pessimistic beliefs about

being challenged relative to the empirical distribution. The difference of beliefs and the

empirical distribution is significant in both a simple t-test (t = −5.38, p-value < .01) and a

Mann-Whitney-Wilcoxen test (z = −5.13, p-value < .01).23
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Figure 5: Buyer Beliefs About the Probability of Challenge Relative to Empirical Challenge
Probabilities of Sellers

Vice versa, buyers are optimistic about the likelihood of being challenged after a lie with a

high signal. While S’s challenge 85.0% of the time after a lie (a 15.0% deviation from the Nash

Equilibrium), the average belief is 58.7% (a 41.3% deviation from the Nash Equilibrium).

This optimism is again prevalent across the population, with 76.7% of individuals having

optimistic beliefs about being challenged relative to the empirical distribution. The difference

of the belief elicitation game would be paid.
23Observations are an individual buyer’s average belief and an individual S’s average challenge rate over all

periods.
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between beliefs and the empirical distribution is again significant (t-test: t = 4.70, p-value

< .01; Mann-Whitney-Wilcoxen test: z = 5.56, p-value < .01).

Given the optimistic beliefs about outcomes after a lie and pessimistic beliefs about

outcomes after truthful announcing, a natural hypothesis is that B’s may believe that they

are monetarily better off lying than telling the truth. To test this hypothesis, we use B’s

reported beliefs to compute the expected value of lying and telling the truth after a high

signal if B’s respond optimally to a subsequent challenge. We next take the difference

between these expected values to estimate the expected monetary gain from truth-telling.

Result 3 The majority of B’s believe they have a higher expected value from lying compared

to truth-telling after a high signal. B’s with more optimistic beliefs about being challenged

after a lie and more pessimistic beliefs about being challenged after a truthful announcement

are more likely to lie.

Figure 6 show the empirical cumulative distribution functions of the expected gain from

truth-telling split between observations where an individuals is lying (N = 543) and observa-

tions where an individual is telling the truth (N = 491).24 As can be seen, the empirical CDF

of the expected monetary gain from truth-telling for individuals who tell the truth first order

stochastically dominates the CDF for individuals who lie, suggesting that heterogeneity in

beliefs is an important factor in the decision to announce truthfully.25 For both distributions,

however, the proportion of individuals where the expected monetary gain from truth-telling

is negative is large, with 79.2% (72.7%) of observations where the buyer lies (tells the truth)

falling into this category.26

One potential reason for the high level of pessimism seen in B’s beliefs about being

inappropriately challenged is that at least a subset of individuals are choosing announcement

strategies that limit their ability to learn over time. 26.7% of individuals lie in each of the

last 10 periods of the session and in at least 90% of periods overall. These individuals account

for 64.2% of overall lies and 66.7% of lies that occur in the last 10 periods. As a B who

24We restrict attention to observations where (i) the buyer believed that announcing low with a high sig-
nal had a higher chance of being challenged than announcing high with a low signal and (ii) the buyer
announced low with a low signal. There is a very small fraction of individuals in our sample that do not
satisfy these plausibility conditions. If we include them, all the qualitative results remain the same and
significant.

25These distributions are significantly different in a bootstrapped version of the Mann-Whitney-Wilcoxen
test where we randomly sampled a single period from each buyer in each iteration. p-value < .01. See
Datta & Satten (2005) for a discussion.

26Recent work by Holt and Smith (2016) studies a belief elicitation procedure similar to the one we use here
and does not find any systematic bias in reports towards the mean. Burford and Wilkening (2016) studies
the exact mechanism used here and also does not find any systematic bias in reports. Nonetheless, because
empirically accurate beliefs lie on the boundary of the interval, we note that our calculation here may be
sensitive to measurement error.
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the Truth (Light Grey).

lies in each period gets no new information about the likelihood of being challenged after a

truthful announcement, her actions inhibits her ability to learn.27

Overall, our data suggests something of a paradox in the functioning of the Moore-Repullo

mechanism. While the mechanism was designed to induce truth-telling using pecuniary

incentives, most individuals who are truthful are distrustful of their partner and believe

that such actions will lead to monetary loss. Truthful announcements are therefore being

supported not by pecuniary incentives, but instead by non-pecuniary ones.

4.3 The Mechanism Under Almost-Perfect Information

The theoretical discussion in Section 2 predicts that as we introduce imperfect information

about the value of the good, additional breakdowns in the mechanism will occur. As de-

27The implementation mechanism that we study is based on the auxiliary assumption that individuals
concentrate on the subgame-perfect equilibrium of the game. However, there exists other refinement
concepts that may better describe behavior in our environment. One such refinement is the set of consistent
self-confirming equilibrium, which requires that each player correctly predicts play at all information sets
that can be reached when the player’s opponents, but not the player herself, deviate from their equilibrium
strategies. In the mechanism we study, the set of consistent self-confirming equilibrium includes the
subgame perfect equilibrium and a second equilibrium where a buyer with a high signal lies, is challenged,
and accepts the counteroffer. Buyers who play according to this second self-confirming equilibrium do
not observe the sellers’ challenge decisions after a truthful announcement and cannot update their initial
beliefs. See Fudenberg, Kreps & Levine (1988), Fudenberg and Levine (1993) and Kalai and Lehrer (1993)
for a discussion of this alternative refinement and its relation to learning.
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scribed in Hypothesis 2, B’s with high signals are predicted to lie with greater frequency

and S’s are predicted to reject the buyers’ lies with lower frequency. Further, as described

in Hypothesis 3, S’s are predicted to challenge low announcements although they received

low signals (what we call a false challenge) and B’s are predicted to accept some of these

false challenges. We find support for most of these theoretical predictions:

Result 4 The introduction of noise leads to a significant increase in B’s lies and a small

and weakly significant decrease in challenges of low announcements by S’s with a high signal.

In addition, the introduction of noise also increases B’s belief that even truthful announce-

ments of a high signal will be challenged. Finally, noise also leads to an increase in both

false challenges by S’s and B’s acceptance of challenges with a low signal after a low an-

nouncement.

An interesting aspect of Result 4 is that it confirms theoretically predicted behavioral

tendencies that undermine the mechanism but, in addition, the evidence also shows that

noise tends to exacerbate problems with the mechanism that we have already observed in

the no-noise treatment: B’s have more pessimistic beliefs that truthful announcements of a

high signal will be challenged in the noise treatment compared to the no-noise treatments.

This finding is in contrast to the theoretical prediction that truthful announcements of high

signals should never be challenged in any of these treatments.

The left hand side of Figure 7 shows the proportion of B’s with a high signal who lie

across the three treatments. The error bars show 95% confidence intervals of each proportion

with standard errors clustered at the individual level. As can be seen, B’s lie in 45.9% of

cases in the 5% noise treatment and in 52.2% of cases in the 10% noise treatment. Both of

these lie rates are significantly higher than those in the no-noise treatment, where lies occur

in 30.8% of cases (p-value < .01 in both treatment comparisons).28

The right hand side of Figure 7 shows that there is a small and weakly significant de-

crease in the challenges of low announcements with the high signal relative to the no-noise

treatment, where 93.4% of cases were challenged; in the 5% and 10% noise treatments the

proportion of cases challenged were 85.2% and 88.6% respectively (5% noise treatment: p-

value < .01; 10% noise treatments: p-value = .087). All three challenge rates are high,

28Using a single dummy for both noise treatments, the treatment effect is also significant at the .01 level
when data is restricted to only the first or second treatment in a session (Difference in first treatment: .20;
Difference in second treatment: .16) and when data is restricted to sessions that started in the no-noise
treatment or the noise treatments (No-noise treatment first: .11; Noise treatments first: .26). Other than
a slightly higher lie rate in the early periods of the first treatment, there does not appear to be any order
effects in our main experiment.
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however, indicating that it would not be in B’s interest to lie if their beliefs were consistent

with the empirical challenge distributions of the sellers.
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Figure 7: Buyer Lies and Seller’s Probability of Challenging with High Signal after a Low
Announcement

Our theoretical model predicts that the increase in lies in the noise treatment is driven

by B’s belief that S is less likely to challenge a lie. The left panel of Figure 8, which reports

B’s belief that a lie will be challenged given a high signal, supports the existence of this

channel. In the no-noise treatment 42.4% of individuals believe that a lie will always be

challenged, while in the noise treatments only 25.4% of individuals hold this belief. Thus, in

the noise treatments the buyers are much more optimistic that they can get away with a lie.

This difference in beliefs across the noise treatments and the no-noise treatment is significant

based on an ordered probit regression that regresses B’s beliefs on a noise treatment dummy

that is 0 for the no-noise treatment and 1 for the noise treatments (z = −2.45, p-value

= .014, standard errors clustered by individual).29

The right panel of Figure 8 shows that the belief pattern observed in the no-noise treat-

ment, namely that B’s believe that even truthful announcements of a high value will be

challenged, is exacerbated by the existence of noise. While 48.1% of individuals believe that

a truthful announcement will never be challenged in the no-noise treatment, only 36.1% of

subjects in the noise treatments have this belief. This difference is significant in an ordered

probit regression of buyers’ beliefs on the same noise treatment dummy used above (z = 2.21,

p-value = .027, standard errors clustered by individual).

29Beliefs in this ordered probit regression and the one in the following paragraph are treated as categorical
data with “Never” treated as category 0 and “Always” treated as category 3. The ordered probit has
no other explanatory variables beyond the noise treatment dummy. The null hypothesis is that the noise
treatment dummy coefficient is zero.
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Taken together, the belief pattern observed in Figure 8 suggests that there are two reasons

why noise increases buyers’ lying behavior. First, noise induces B’s to believe that a lie is less

likely to be challenged and, second, it strengthens the belief that truthful announcements

will be challenged. Both reasons reduce the perceived pecuniary benefits from telling the

truth relative to telling a lie. We study the causal impact of the second channel on buyers’

announcement behavior in both the noise and the no-noise treatment in the next section.
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Figure 8: Buyer’s Beliefs after High Signal

Our results for the noise treatments also support the predictions of Hypothesis 3. Figure

9 shows the proportion of S’s who make a false challenge and the proportion of B’s who

accept a counter-offer after they received a low signal and announced a low value in each of

the three treatments. The error bars show 95% confidence intervals of each proportion with

standard errors clustered at the individual level. As can be seen on the left hand side, while

there are very few false challenges in the no-noise treatment, the proportion of false challenges

increases to 20.7% in the 5% noise treatment and 18.8% in the 10% noise treatment. Both

noise treatments have significantly more false challenges than in their respective no-noise

treatments based on a linear regression with errors clustered at the individual level (p-value

< .01 in both cases).

As can be seen on the right hand side, B’s are also much more likely to accept a counter-

offer with a low signal and a low announcement in the noise treatments than in the no-noise

treatment. While B’s accepted a challenge after a low announcement and a low signal in only

2.4% of observations in the no-noise treatment, they accepted 27.7% of such challenges in

the 5% noise treatment and 30.2% of such challenges in the 10% noise treatment. Both noise

treatments have significantly more acceptances of counter-offers after a low announcement
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and a low signal than their respective no-noise treatment based on a linear regression with

errors clustered at the individual level (p-value < .01 in both cases).
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4.4 Robustness checks

4.4.1 Does the fear of inappropriate challenges induce buyers’ to lie?

If the belief that truthful announcements will be challenged is the main driver of lies in the

no-noise treatment and also drives a subset of lies in the noise treatment, then eliminating the

potential of such challenges should increase the likelihood of truth-telling in both treatments.

We test this hypothesis by running four additional sessions where we eliminated the ability

for S to challenge a B who makes a high announcement. Two of the sessions started in

the 10% noise treatment and ended in the no-noise treatment while in the other session,

individuals started in the no-noise treatment and ended in the 10% noise treatment. This

“no-inappropriate challenge” mechanism is expected to increase the expected gain from

truth-telling in both the noise and the no-noise treatments. We expect, therefore, that a

large proportion of lies will decrease in this treatment relative to the baseline but that a

significant portion of the gap between the no-noise and noise treatments will remain. A

total of 82 individuals participated in these additional experiments.

Result 5 Eliminating the ability of S to challenge high announcements substantially reduces

B’s lies in both the no-noise treatment and the noise treatment. The introduction of noise

leads to an increase in B’s lies in both the baseline mechanism and the new mechanism.
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Figure 10 shows the proportion of lies in the original sessions with 10% noise and the

new sessions using the no-inappropriate challenge mechanism. The error bars show 95%

confidence intervals with standard errors clustered at the individual level. As can be seen, lies

in both the noise treatment and the no-noise treatment decrease with the no-inappropriate

challenge mechanism as we would expect if pessimistic beliefs about being challenged after a

truthful announcement is a major contributor to lying.30 This decrease in lies is particularly

pronounced when comparing the second treatment in each session, where buyer lies fell to

only 7.1% in the no-noise treatment and 27.0% in the 10% noise treatment.

0%

25%

50%

75%

100%

10% Noise No Noise

Original Mechanism (N = 860)

Mechanism With No Inappropriate Challenges (N = 410)

Proportion of  Buyer Lies with Original Mechanism
and Mechanism with No Inappropriate Challenges

Figure 10: Frequency of Buyer Lies with original mechanism and alternative simple mecha-
nism where high announcements cannot be challenged.

It is interesting to note that the type of sequential mechanism we tested in the above ad-

ditional sessions is not capable of implementing all social choice functions. Moore (1992) calls

mechanisms like this “simple sequential mechanisms” and provides conditions under which

they can implement a desired social choice function. Roughly speaking, this requires that

only one party has state dependent preferences, or that preferences are perfectly correlated.31

30The difference in lie frequency between the original mechanism and the no false challenge mechanism is
significant at the 10% level based on a Mann-Whitney test where the lie frequency of each individual is the
variable of interest: z = 3.21, p-value < .01. Similar results hold for a linear regression with data clustered
at the individual level (p-value < .01).

31See Nöldeke & Schmidt (1995) and Hoppe & Schmitz (2011) for work on simple “option contracts” that
have promising properties in a one-sided hold-up environment even when renegotiation is possible. We
deliberately explore the performance of a three-stage mechanism in our simple environment with one-sided
hold-up, because if such mechanisms fail to work well in a simple environment, they are even more likely
to fail in the more complex environments that necessitate their use.
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4.4.2 How small is small?

While we chose the levels of 5% and 10% noise in order to have enough power to differentiate

between treatments, AFHKT suggests that very small levels of noise can lead to a break-

down of the mechanism. To study whether deviations from perfect information impact the

distribution of lies even for very small levels of noise, we ran four additional sessions where

we started with 10 periods of a 1% noise treatment and ended with a no-noise treatment.

A total of 82 individuals participated in these additional experiments. We compare this

treatment to the sessions where we started with 10 periods of the 5% noise treatment and

ended with a no-noise treatment.

Result 6 Even a very small perturbation in common knowledge leads to an increase in lies

relative to the no-noise treatment.

Figure 11 shows the proportion of buyer lies and seller false challenges in the 5% noise

treatment and 1% noise treatment with 95% confidence intervals clustered at the individual

level. The dotted lines in each figure show the proportion of buyer lies and seller false

challenges in the subsequent no-noise treatment.

As can be seen in the left hand panel, both the 5% noise sessions and 1% noise have

significantly more lies in the noise treatment than in their corresponding no-noise treatment.

The proportion of lies in the 5% and the 1% noise treatments is surprisingly similar; there is

no significant difference in the proportion of buyer in these two treatments based on a linear

regression where buyer lies are regressed on the treatment dummy for the 5% noise sessions

(t = .76, p-value = .450).

As can be seen in the right hand panel, sellers make false challenges 10.3% of the time

in the 1% noise treatment relative to 20.8% of the time in the 5% noise treatment — a

difference that is weakly significant (t = −1.91, p-value = .059) based on a linear regression

where sellers’ false challenges are regressed on a dummy for the 5% noise treatment.

Taken together, while there is a small reduction in seller false challenges when noise

rates decline, the large number of buyer lies in the 1% noise treatment illustrates that even

small departures from common knowledge have a significant impact on the willingness of

individuals to report truthfully. Our results thus illustrate the non-robustness of the Moore-

Repullo mechanism to small amounts of noise.

5 Conclusion

In this paper we conducted a laboratory experiment to test the extent to which Moore

and Repullo’s subgame perfect implementation mechanism induces truth-telling in practice,
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Figure 11: Proportion of Lies and False Challenges in the 5% Noise Treatment and 1% Noise
Treatment.

both in a setting with perfect information and in a setting where buyers and sellers do not

share common knowledge about the good’s value. Our first finding is that even in the no-

noise treatment, where no lies are predicted in equilibrium, buyers lie by announcing a low

value with a high signal roughly 25% of the time. Our data suggests that in all treatments

a substantial proportion of these lies are driven by pessimism about being inappropriately

challenged after a high announcement. This pessimism is strong enough that a large majority

of individuals who are telling the truth believe they would be better off lying, which suggests

that the mechanism is being supported in part by non-pecuniary incentives for telling the

truth.

Our second main finding is that the introduction of noise leads to an increase in buyers’

lies and sellers’ false challenges. The introduction of noise increases the proportion of buyers

who announce a low value with a high signal by 15 to 25 percentage points; these lies are

persistent and do not diminish with experience. Similarly, the proportion of sellers who

falsely challenge in the noise treatments increases by 15 percentage points relative to the

no-noise treatment. Lack of perfect information is behaviorally important even when the

level of noise is reduced to a very small 1% level.

If we adjust the Moore-Repullo mechanism by ruling out false challenges, buyers’ lying

rate in the no-noise treatment decreases by 15.6 percentage points. Likewise, the institutional

removal of such false challenges also decreases the lying rate in the noise treatments signifi-

cantly. However, in the noise treatments this deviation from the Moore-Repullo mechanism

does not solve the lying problem. Even if the fear of false challenges of high announcements

is ruled out, a lying rate of 27% prevails in the 10% noise treatment, which indicates the
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pervasive influence of uncertainty regarding the good’s value on lying behavior.

One important potential objection to our findings is that when parties themselves design a

mechanism one should be less concerned about the fears of irrationality that play a prominent

role in our experiment. As Eric Maskin suggested to us, when the parties are designing a

contract they may engage in all sorts of discussion about how the game might be played. This

is an important point and we believe that there is potential here for future theoretical and

experimental research. From a theory standpoint, pre-play communication can naturally be

modelled as a cheap-talk stage prior to the mechanisms studied in this paper. To understand

the benefits or the potential costs of such communication one should, and can, model this

additional stage.32 From an experimental standpoint, it would be interesting to see whether

pre-play communication makes buyers more confident about the rationality of their playing

partner and whether improved confidence may lead to less buyer lies in environments without

noise.

Our findings suggest several important avenues for future research, in addition to that

mentioned in the preceding paragraph. First, the fact that individuals are willing to sacrifice

their material well-being to tell the truth suggests that preferences for honesty should help

implementation.33 Second, in view of the empirical relevance of common knowledge, it also

is important to design mechanisms that are robust to at least small amounts of imperfect

information about the good’s value. Third, it would be interesting to know (theoretically and

empirically) how the introduction of asset ownership affects the functioning of extensive form

mechanisms. In particular, asset ownership could be naturally modeled as an outside option

for the asset holder, which in turn would affect either party’s incentive to report the good’s

value truthfully or to challenge the other party. It would be interesting to see whether asset

ownership helps achieve better equilibrium outcomes that are also robust to introducing

small amounts of private information. Finally, similar experiments could be used to test

the robustness of other implementation mechanisms, starting with virtual implementation.

Overall, our analysis and findings in this paper raise a number of exciting issues to be tackled

by future research.

32Miettinen (2013) studies pre-play communication in settings where agents may suffer guilt for reneging on
their past promises. The author shows that when actions are strategic complements, informal agreements
are easier to sustain than when actions are strategic substitutes.

33Current research by Kartik, Tercieux and Holden (2014) suggests that when individuals have a known
preference for honesty, full implementation can be achieved with simple mechanisms requiring only two
rounds of iterated deletion of strictly dominated strategies.
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Appendix A: Point Predictions of the Mixed Strategy

Equilibrium

In this section, we derive the point predictions of the mixed strategy equilibrium of our

game for each of our three noise treatments. We begin with the standard model where

all participants are risk neutral and selfish. We then show how the point predictions of

the model change when buyers receive positive utility for rejecting a challenge of the seller.

This alternative model is discussed in detail in Fehr, Powell, & Wilkening (2014) where

a sequential reciprocity equilibrium in the spirit of Dufwenberg & Kirchsteiger (2004) is

developed.

The mixed strategy equilibrium with selfish risk-neutral buyers

As in the main text, let the true valuation of the good be θ ∈ {θH = 70, θL = 20}, with

both states being equally likely. Let each player receive one of two possible signals, sH and

sL, where sH is a high signal correlated with θ being equal to 70, and where sL is a low

signal correlated with θ being equal to 20. Using the notation sHB (resp. sLB) to indicate that

B received the high signal sH (resp. the low signal sL), the following table shows the joint

probability distribution νε over θ, the buyer’s signal sB, and the seller’s signal sS :

νε sHB , s
H
S sHB , s

L
S sLB, s

H
S sLB, s

L
S

θ = 70 1
2
(1− ε)2 1

2
ε(1− ε) 1

2
ε(1− ε) 1

2
ε2

θ = 20 1
2
ε2 1

2
ε(1− ε) 1

2
ε(1− ε) 1

2
(1− ε)2

For a given noise level ε, an action profile of a buyer consists of a probability of announcing

low after observing each signal and a probability of rejecting the challenge given a signal

and an announcement. Denote LH as the probability of making a low announcement after

observing a high signal and LL as the probability of making a low announcement after a low

signal. Further, let RaB |sB be the probability that the buyer rejects a challenge given his

own announcement aB ∈ {L,H}, his own signal sB = {L,H} and a challenge by the seller.

An action profile of the seller consists of a probability of challenging an announcement

of the buyer for each potential announcement and signal. Let CaB |sS be the probability that

the seller challenges given signal sS ∈ {L,H} and an observed announcement of the buyer

aB = {L,H}.
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While there are 10 potential mixing probabilities to specify in an equilibrium, we can

use some of the structure of the mechanism to rule out mixing on some action sets. Let

P20 = 10 and P70 = 35 be the trade prices without arbitration and let PA = 25 and PB = 75

be the counter-offer prices after announcing 20 and 70. A buyer who announces high and is

challenged faces a price of PB = 75 which is above his actual value of the good regardless

of the state. Thus the buyer will always reject arbitration if he has announced high and

RH|L = RH|H = 1. This also implies that the seller will never call the arbitrator if the

buyer announces high, and thus CH|L = CH|H = 0. Further, a buyer who has a high signal

and announces low will update his belief about the quality of the good based on the act of

being challenged by the seller. However, for any equilibrium where the seller challenges with

positive probability, the most pessimistic posterior the buyer can have after being challenged

is that the state is low with probability 1/2 (The posterior in the unlikely case where the

seller challenges only with the low signal). As the counter-offer price is 25 and the buyer’s

expected value for the good with this belief is 45, the buyer will always accept the counter-

offer, and thus RL|H = 0. Finally, the best a buyer can do with a low signal if he always

announces high is to receive 35 with probability ε and −15 with probability 1 − ε. If in

equilibrium the buyer earns more than 35ε − 15(1 − ε) for a low announcement, it will be

the case that LL = 1.34

Taking as given the actions of buyers and sellers in the six states specified above, the

mixed strategy equilibrium is based on (i) the proportion of times a buyer announces low

given a high signal, LH , (ii) the challenge probabilities given a low announcement, CL|L and

CL|H , and (iii) the probability that the buyer rejects a challenge given a low signal, a low

announcement, and a challenge, RL|L. These four mixing probabilities form the basis of all

PBE where all stages of the subgame are reached and beliefs of both parties are consistent

with the action profiles of the other party.

Given that beliefs of all parties must be consistent with their actions, a necessary con-

dition for the mixed strategy equilibrium is that each individual is indifferent between each

of their actions given the mixing probabilities of the other parties. These indifference con-

ditions generate four linear constraints on the four mixing probabilities of the buyer and

seller and generate a four-by-four linear system which derives unique point predictions. The

construction of each linear constraint is as follows:

(1) Buyer’s indifference between announcing low and high with a high signal: For the

buyer to be indifferent between announcing high and low, the expected value of these an-

nouncements must be equal when aggregated over all potential states of nature.

34We argue in the main text that there is a pure strategy equilibrium where LL = 0 and challenges never
occur.

40



Panel (a) of Figure 12 shows the four potential states of nature where the buyer can have

a high signal after nature draws the true value of the container and (conditional) signals

for the buyer and seller. For each state, the expected value of each potential announcement

is shown as a function of the challenge probabilities of the seller. For example, as seen on

the far left of the figure, with probability 1
2
ε(1 − ε), the buyer receives the high signal, the

seller receives the low signal, and the true state of nature is low. If in this state the buyer

announces low, he will not be challenged 1−CL|L percent of the time and be challenged CL|L

percent of the time. As he has the high signal, he will always accept the counter-offer and

thus these two outcomes yield values of 20− P20 = 10 and 20− F − PA = −30 respectively.

If, on the other hand, the buyer announces high, he will never be challenged (since CH|L = 0)

and receive 20− P70 = −15 for sure.

Taking into account the probability of each one of these potential states and the state’s

outcome, a buyer is indifferent between a high and low announcement if:

ψ(ε)CL|H + δ(ε)CL|L =
P70 − P20

F + PA − P20

, (1)

Where ψ(ε) = ε2 + (1− ε)2 is the probability that the signals are the same for a given ε and

δ(ε) = 2ε(1− ε) is the probability that they are different.

(2) Buyer’s indifference between accepting and rejecting a challenge with a low signal and

low announcement: In an equilibrium in which the seller is mixing between challenging and

not challenging a low announcement with a low signal, it must be the case that the buyer

is also indifferent between rejecting and accepting such a challenge. Panel (b) of Figure 12

shows the probability of reaching this acceptance and rejection as a function of the signals

and the challenge probabilities of the seller and under the assumption that LL = 1. Taking

into account the probability of each of these potential states and the state’s outcome, a buyer

is indifferent between rejecting and accepting the challenge if:

CL|L − τ(ε)CL|H = 0, (2)

where

τ(ε) = −ε(1− ε)[70− PA] + (1− ε)ε[20− PA]

ε2[70− PA] + (1− ε)2[20− PA]
(3)

is the ratio of expected outcomes when the two parties have opposite signals relative to

when they have the same signal. Note that τ(ε) is positive for all ε we consider since the

denominator is negative.

(3) Seller’s indifference between challenging and not challenging after a low signal: As

with the buyer, the seller’s indifference for challenging after a low and high signal are based
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Figure 12: States Contributing to the Decision of the Buyer to Lie and Reject a Potentially
False Challenge
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(a) The four potential states that contribute to the buyer’s decision to lie by announcing low with a high 
signal.   The outcomes of these states are shown for a low and a high announcement.  

(b) The four potential states which contribute to a buyer’s decision to accept or reject a potentially 
false challenge.  The outcomes of these states are shown for a rejected and an accepted 
counteroffer.
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on the two mixing probabilities of the buyer. Panel (a) of Figure 13 shows the expected value

for challenging and not challenging for states of the world where the seller has a high signal

and observes a low announcement. The likelihood of reaching each of these potential states

is based on the likelihoods that the buyer will make a low announcement with each signal

(LH and LL = 1) while the expected value of challenging is based on the likelihood that the

buyer will accept this challenge (RL|L and RL|H = 1). A seller is indifferent to challenging

and not challenging with the high signal if:

− LH +
δ(ε)

ψ(ε)

PA + 2F

PA + F − P20

RL|L =
δ(ε)

ψ(ε)
(4)

where, as before ψ(ε) = ε2 + (1 − ε)2 is the probability that the signals are the same for a

given ε and δ(ε) = 2ε(1− ε).
(4) Seller’s indifference between challenging and not challenging after a high signal: Panel

(b) of figure 13 shows the expected value for challenging and not challenging for states of the

world where the seller has a low signal and observes a high announcement. As before, the

seller’s likelihood of reaching each potential state depends on LL while the expected value

within these nodes depends on RL|L. A seller is indifferent to lying and not lying if:

− LH +
ψ(ε)

δ(ε)

PA + 2F

PA + F − P20

RL|L =
ψ(ε)

δ(ε)
. (5)

Note that this is identical to the seller’s indifference condition for challenging with the low

signal except that the ratio of states is inverted.

Given the four indifference conditions, the point predictions of the model come from

solving the four-by-four system of simultaneous equations. The solution to this system is as

follows:

Result 7 With selfish agents, the mixed strategy equilibrium with ε = .05 is LH = 0, RL|L =

.53333, CL|H = .66, and CL|L = .285. The mixed strategy equilibrium with ε = .1 is LH = 0,

RL|L = .53333, CL|H = .625, and CL|L = .625.

The surprising restriction that LH = 0 is due to the fact that the seller must be indifferent

to mixing in the case of a high and low signal.

In the next section, we show that when buyers have negative reciprocity and wish to

retaliate against the seller for a challenge, the buyer may strictly prefer to reject after a low

signal and a low announcement. This (likely) scenario eliminates seller false challenges (i.e.,

sets CL|L to zero) and instead leads to buyer challenges.
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Figure 13: States Contributing to the Decision of the Seller to Challenge with a High and
Low Signal
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(a) The four states which contribute to a seller’s decision to challenge a low announcement when 
observing a high signal. The outcomes of these states are shown in the case of a challenge and no 
challenge

(b) The four states which contribute to a seller’s decision to challenge a low announcement when 
observing a low signal. The outcomes of these states are shown in the case of a challenge and no 
challenge
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Point Predictions with Negative Reciprocity

In Fehr, Powell, & Wilkening (henceforth FPW), it is shown that buyers who view a

seller’s challenge as an unkind act may retaliate against the sellers by rejecting appropriate

counter-offers where the expected value for accepting the counter-offer is small. While the

parametrization of the Moore-Repullo mechanism is set to make such retaliation unlikely

without noise, there is no easy way to avoid retaliation from affecting the point predictions

of the mixed strategy equilibrium where, by construction, the buyer is indifferent between

accepting and rejecting a challenge. In this section, we discuss how the point predictions of

the model changes when buyers become more reciprocal and the level of buyer reciprocity is

common knowledge.

Following Dufenberg & Kirchsteiger (2004), FPW shows that in a psychological games

framework, a challenge by the seller is always seen by the buyer as an unkind act. Buyers

who are prone to negative reciprocity may gain a “psychological” payoff by reducing the

payoff of the seller and rejecting the counter-offer. Rather than reconstructing the entire

arguments of these previous works, we use this insight in a reduced form way. Let the utility

of a buyer who rejects the seller’s counter-offer be −F +75ρ, where ρ is the additional utility

the buyer receives from rejecting the sellers counter-offer and reducing the seller’s payoff by

75. Note that since 75ρ is the amount of money that the buyer is willing to leave on the

table to reject a counter-offer of the seller, ρ can be thought of as the amount $x that the

buyer is willing to forego to punish the seller by $1.

Figure 14 maps the point predictions of the four mixing probabilities as ρ increases.35 As

can be seen by looking at the point prediction of CL|L, negative reciprocity initially reduces

the proportion of false challenges. Such reductions in the likelihood of challenges increase

the utility of the buyer for accepting the counter-offer and offset the utility from retaliation.

As ρ increases, there exists a cutoff point for which the buyer will reject the counter-offer

even if the seller never lies. At this point CL|L = 0 and mixing occurs only over LH and

CL|H . For very high ρ, outside the range of parameters seen in FPW, negative reciprocity

can lead to the buyer rejecting challenges even when he has the high signal.

Based on the levels of negative reciprocity estimated using data from FPW, we expect ρ

to range between .17 and .46. At these parameter values, mixing typically occurs over LH

and CL|H . Note, however, that for all reciprocity levels below ρ = .6, the overall amount of

buyer lies (LH) plus seller false challenges (CL|L) is unambiguously increasing in noise.

35Graphs are shown for the case where sellers are not reciprocal. In the more general case, seller reciprocity
will reduce the frequency of buyer lies in cases where they arise in equilibrium. However, it has no effect
on the ordering of treatments.
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Figure 14: Point predictions for seller false challenges and buyer lies as a function of buyer
reciprocity

Pure Strategy Equilibrium

In the noise treatment, our game also admits two pure-strategy equilibrium in which buyers

always lie. First, one can sustain the following “bad” (sequential) equilibrium with the

appropriate sequence of beliefs: B announces low (i.e a value of 20 ECU) in stage 1 regardless

of his signal, S never challenges in stage 2, and (off-equilibrium) B always rejects a counter-

offer made in stage 3 if that stage were to be reached.

More specifically, this equilibrium can be sustained as a sequential equilibrium with the

buyer’s (off-equilibrium) belief that the true state is low (θ = θL) when he is challenged

and the arbitrator’s counter-offer is made. To establish sequential rationality, we proceed

by backward induction. It stage 3, regardless of his signal, B believes with probability one

that the state is θL. Accepting S’s offer at a price of 25 (resp. 75) leads to a payoff of

20− 25− 25 = −30 (resp. 20− 25− 75 = −80) whereas rejecting it leads to a payoff of −25.

Thus, it is optimal for B to reject the offer. Moving back to stage 2, if S chooses “Challenge,”

S anticipates that her offer will be rejected by B in stage 3, and thus anticipates that, as

ε goes to zero, the payoff is approximately equal to −25 if her signal is high and to −25 if

the signal is low. On the contrary, if S chooses “No Challenge,” S guarantees a payoff of 10.

Thus, regardless of her signal, it is optimal for S not to challenge. Moving back to stage 1,

suppose first that B receives the high signal sHB . Then, as ε becomes small, B believes with

high probability that the true state is θH so that his expected payoff from announcing “low”

is close to 70− 10 = 60, greater than 35, which B obtains when announcing “high.” Thus,

it is optimal for B to announce “low.” A similar reasoning applies if B receives the low

signal sLB. Finally, consistency of beliefs follows by identical arguments to those in AFHKT

(footnote 13). Thus, the above is indeed a sequential equilibrium.

46



Note that if some subjects play this equilibrium we should observe an increase in buyers

lies because they announce a low value after a high signal. If sellers are also coordinating on

this equilibrium, we should never see challenges by the seller.

A second pure strategy (sequential) equilibrium can be sustained where the buyer always

announces high regardless of his signal. In this equilibrium, the buyer’s (off-equilibrium)

belief is that the true state is high with probability .1 in stage 2 when he receives the low

signal, announces a low valuation, and is challenged. The expected value for accepting the

challenge is .9×−5+ .1×45 = 0. Thus, he is indifferent between accepting and rejecting the

challenge. If in stage 1 the buyer believes that the seller will always challenge, the expected

value of this sequence of play is -25. The buyer can do strictly better by announcing a high

value with the low signal and thereby guarantee himself a return of .9×−15+ .1×35 = −10.

Note that if buyers play this equilibrium we should see an increase in the proportion of

buyers making high announcements with the low signal. Buyers taking this action should

believe that they will be challenged if they make a low announcement.

Appendix B: Mechanism used to elicit incentive com-

patible beliefs

In the follow-up treatment with incentive compatible beliefs, we use the following belief

elicitation game based on a mechanism developed by Savage (1971). For each potential

combination of announcement and signal, buyers are asked to submit a belief, b, between 0

and 100 corresponding to the percentage chance that the seller will call in the arbitrator.

A random number c ∈ [0, 100] is then drawn by the computer which corresponds to the

“computer’s percentage chance of calling in the arbitrator.”

At the end of the experiment, one of the periods is randomly selected for payment.

Using an eight-sided dice, the main experiment is paid 50% of the time while each of the

four potential beliefs are paid 12.5% of the time. If a belief elicitation game is selected, the

belief elicitation game is resolved as follows. If b ≤ c the buyer is matched with the seller

and his outcome is based on the arbitration decision of the seller. If the seller does not

call the arbitrator, the buyer receives $20. If, however, the seller calls the arbitrator, the

buyer receives $0. If b > c, the buyer is matched to the computer. The computer calls the

arbitrator with probability c/100 and thus the buyer receives $20 with probability 1−(c/100)

and $0 otherwise.

The mechanism is similar to the Becker, DeGroot, Marshack (1964) mechanism and is

shown by Karni (2009) to induce truthful reporting of beliefs for rational agents with any
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von Neumann-Morgenstern utility function. Further, as individuals are paid only for the

main experiment or the bonus game, there is no concerns about hedging. The mechanism

and payment scheme are thus robust to heterogeneity in risk aversion and are incentive

compatible.

As the belief elicitation mechanism is relatively complex, we provide extensive training

with the mechanism before the start of the experiment. Buyers receive both written and oral

instructions about the mechanism, which include a series of examples that make clear that

under reporting or over reporting beliefs can lead to worse outcomes. Subjects are also told

explicitly that it is best to write down their true belief. Following the instructions, subjects

are also given a series of quiz questions about the elicitation mechanism where they must

calculate various potential outcomes for truthfully reported and misreported beliefs.
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